Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hypertension
Volume 2013, Article ID 842827, 9 pages
http://dx.doi.org/10.1155/2013/842827
Research Article

Strategies Aimed at Nox4 Oxidase Inhibition Employing Peptides from Nox4 B-Loop and C-Terminus and p22phox N-Terminus: An Elusive Target

1Vascular Medicine Institute, University of Pittsburgh, 12th Floor BST, 200 Lothrop Street, Pitsburgh, PA 15261, USA
2Department of Pharmacology & Chemical Biology, University of Pittsburgh, 13th Floor BST, 200 Lothrop Street, Pitsburgh, PA 15261, USA

Received 21 December 2012; Accepted 10 February 2013

Academic Editor: Nicolas Federico Renna

Copyright © 2013 Gábor Csányi and Patrick J. Pagano. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. C. Dale, L. Boxer, and W. C. Liles, “The phagocytes: neutrophils and monocytes,” Blood, vol. 112, no. 4, pp. 935–945, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Csányi, W. R. Taylor, and P. J. Pagano, “NOX and inflammation in the vascular adventitia,” Free Radical Biology and Medicine, vol. 47, no. 9, pp. 1254–1266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. P. J. Pagano, J. K. Clark, M. Eugenia Cifuentes-Pagano, S. M. Clark, G. M. Callis, and M. T. Quinn, “Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia: enhancement by angiotensin II,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 26, pp. 14483–14488, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Bedard and K. H. Krause, “The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology,” Physiological Reviews, vol. 87, no. 1, pp. 245–313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. C. E. Murdoch, S. P. Alom-Ruiz, M. Wang et al., “Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction,” Basic Research in Cardiology, vol. 106, no. 4, pp. 527–538, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Jaquet, L. Scapozza, R. A. Clark, K. H. Krause, and J. D. Lambeth, “Small-molecule nox inhibitors: ROS-generating NADPH oxidases as therapeutic targets,” Antioxidants and Redox Signaling, vol. 11, no. 10, pp. 2535–2552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Laleu, F. Gaggini, M. Orchard et al., “First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis,” Journal of Medicinal Chemistry, vol. 53, no. 21, pp. 7715–7730, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Csanyi, E. Cifuentes-Pagano, I. Al Ghouleh et al., “Nox2 B-loop peptide, Nox2ds, specifically inhibits the NADPH oxidase Nox2,” Free Radical Biology & Medicine, vol. 51, no. 6, pp. 1116–1125, 2011. View at Google Scholar
  9. F. E. Rey, M. E. Cifuentes, A. Kiarash, M. T. Quinn, and P. J. Pagano, “Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O2− and systolic blood pressure in mice,” Circulation Research, vol. 89, no. 5, pp. 408–414, 2001. View at Google Scholar · View at Scopus
  10. G. M. Jacobson, H. M. Dourron, J. Liu et al., “Novel NAD(P)H oxidase inhibitor suppresses angioplasty-induced superoxide and neointimal hyperplasia of rat carotid artery,” Circulation Research, vol. 92, no. 6, pp. 637–643, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Liu, A. Ormsby, N. Oja-Tebbe, and P. J. Pagano, “Gene transfer of NAD(P)H oxidase inhibitor to the vascular adventitia attenuates medial smooth muscle hypertrophy,” Circulation Research, vol. 95, no. 6, pp. 587–594, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. C. E. Norton, B. R. Broughton, N. L. Jernigan, B. R. Walker, and T. C. Resta, “Enhanced depolarization-induced pulmonary vasoconstriction following chronic hypoxia requires EGFR-dependent activation of NAD(P)H oxidase 2,” Antioxidants & Redox Signaling, 2012. View at Publisher · View at Google Scholar
  13. E. L. Schiffrin and R. M. Touyz, “Inflammation and vascular hypertrophy induced by angiotensin II: role of NADPH oxidase-derived reactive oxygen species independently of blood pressure elevation?” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 5, pp. 707–709, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. R. M. Touyz, X. Chen, F. Tabet et al., “Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II,” Circulation Research, vol. 90, no. 11, pp. 1205–1213, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. Q. G. Zhang, D. M. Laird, D. Han et al., “Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury,” PLoS One, vol. 7, no. 4, Article ID e34504, 2012. View at Google Scholar
  16. M. Geiszt, J. B. Kopp, P. Várnai, and T. L. Leto, “Identification of Renox, an NAD(P)H oxidase in kidney,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 14, pp. 8010–8014, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. K. K. Griendling, “Novel NAD(P)H oxidases in the cardiovascular system,” Heart, vol. 90, no. 5, pp. 491–493, 2004. View at Google Scholar · View at Scopus
  18. J. R. Peterson, M. A. Burmeister, X. Tian et al., “Genetic silencing of Nox2 and Nox4 reveals differential roles of these nadph oxidase homologues in the vasopressor and dipsogenic effects of brain angiotensin II,” Hypertension, vol. 54, no. 5, pp. 1106–1114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Tong, X. Hou, D. Jourd'Heuil, R. M. Weisbrod, and R. A. Cohen, “Upregulation of Nox4 by TGFβ1 oxidizes SERCA and inhibits NO in arterial smooth muscle of the prediabetic zucker rat,” Circulation Research, vol. 107, no. 8, pp. 975–983, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Szocs, B. Lassègue, D. Sorescu et al., “Upregulation of Nox-based NAD(P)H oxidases in restenosis after carotid injury,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 1, pp. 21–27, 2002. View at Google Scholar
  21. D. Sorescu, D. Weiss, B. Lassègue et al., “Superoxide production and expression of Nox family proteins in human atherosclerosis,” Circulation, vol. 105, no. 12, pp. 1429–1435, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Kleinschnitz, H. Grund, K. Wingler et al., “Post-stroke inhibition of induced NADPH Oxidase type 4 prevents oxidative stress and neurodegeneration,” PLoS Biology, vol. 8, no. 9, Article ID e1000479, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Carnesecchi, C. Deffert, Y. Donati et al., “A key role for NOX4 in epithelial cell death during development of lung fibrosis,” Antioxidants and Redox Signaling, vol. 15, no. 3, pp. 607–619, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Sedeek, G. Callera, A. Montezano et al., “Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy,” American Journal of Physiology, vol. 299, no. 6, pp. F1348–F1358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Cucoranu, R. Clempus, A. Dikalova et al., “NAD(P)H oxidase 4 mediates transforming growth factor-β1-induced differentiation of cardiac fibroblasts into myofibroblasts,” Circulation Research, vol. 97, no. 9, pp. 900–907, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Li, M. Stouffs, L. Serrander et al., “The NADPH oxidase NOX4 drives cardiac differentiation: role in regulating cardiac transcription factors and MAP kinase activation,” Molecular Biology of the Cell, vol. 17, no. 9, pp. 3978–3988, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. E. C. Vaquero, M. Edderkaoui, S. J. Pandol, I. Gukovsky, and A. S. Gukovskaya, “Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells,” Journal of Biological Chemistry, vol. 279, no. 33, pp. 34643–34654, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Schröder, M. Zhang, S. Benkhoff et al., “Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase,” Circulation Research, vol. 110, no. 9, pp. 1217–1225, 2012. View at Google Scholar
  29. R. M. Touyz and A. C. Montezano, “Vascular Nox4: a multifarious NADPH oxidase,” Circulation Research, vol. 110, no. 9, pp. 1159–1161, 2012. View at Google Scholar
  30. G. Borbély, I. Szabadkai, Z. Horváth et al., “Small-molecule inhibitors of NADPH oxidase 4,” Journal of Medicinal Chemistry, vol. 53, no. 18, pp. 6758–6762, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. N. Lyle, N. N. Deshpande, Y. Taniyama et al., “Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells,” Circulation Research, vol. 105, no. 3, pp. 249–259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. H. M. Jackson, T. Kawahara, Y. Nisimoto, S. M. E. Smith, and J. D. Lambeth, “Nox4 B-loop creates an interface between the transmembrane and dehydrogenase domains,” Journal of Biological Chemistry, vol. 285, no. 14, pp. 10281–10290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Von Löhneysen, D. Noack, A. J. Jesaitis, M. C. Dinauer, and U. G. Knaus, “Mutational analysis reveals distinct features of the Nox4-p22 phox complex,” Journal of Biological Chemistry, vol. 283, no. 50, pp. 35273–35282, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Yu, L. Zhen, and M. C. Dinauer, “Biosynthesis of the phagocyte NADPH oxidase cytochrome b558. Role of heme incorporation and heterodimer formation in maturation and stability of gp91(phox) and p22(phox) subunits,” Journal of Biological Chemistry, vol. 272, no. 43, pp. 27288–27294, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Cheng and J. D. Lambeth, “NOXO1, regulation of lipid binding, localization, and activation of Nox1 by the Phox homology (PX) domain,” Journal of Biological Chemistry, vol. 279, no. 6, pp. 4737–4742, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Nisimoto, H. M. Jackson, H. Ogawa, T. Kawahara, and J. David Lambeth, “Constitutive NADPH-dependent electron transferase activity of the Nox4 dehydrogenase domain,” Biochemistry, vol. 49, no. 11, pp. 2433–2442, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. K. von Lohneysen, D. Noack, P. Hayes, J. S. Friedman, and U. G. Knaus, “Constitutive NADPH oxidase 4 activity resides in the composition of the B-loop and the penultimate C terminus,” The Journal of Biological Chemistry, vol. 287, no. 12, pp. 8737–8745, 2012. View at Google Scholar
  38. K. Von Löhneysen, D. Noack, M. R. Wood, J. S. Friedman, and U. G. Knaus, “Structural insights into Nox4 and Nox2: motifs involved in function and cellular localization,” Molecular and Cellular Biology, vol. 30, no. 4, pp. 961–975, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. R. K. Ambasta, P. Kumar, K. K. Griendling, H. H. H. W. Schmidt, R. Busse, and R. P. Brandes, “Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase,” Journal of Biological Chemistry, vol. 279, no. 44, pp. 45935–45941, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. I. Dahan, S. Molshanski-Mor, and E. Pick, “Inhibition of NADPH oxidase activation by peptides mapping within the dehydrogenase region of Nox2-A "peptide walking" study,” Journal of Leukocyte Biology, vol. 91, no. 3, pp. 501–515, 2012. View at Google Scholar
  41. G. Joseph and E. Pick, “'Peptide walking' is a novel method for mapping functional domains in proteins. Its application to the Rac1-dependent activation of NADPH oxidase,” Journal of Biological Chemistry, vol. 270, no. 49, pp. 29079–29082, 1995. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Nakanishi, S. Imajoh-Ohmi, T. Fujinawa, H. Kikuchi, and S. Kanegasaki, “Direct evidence for interaction between COOH-terminal regions of cytochrome b558 subunits and cytosolic 47-kDa protein during activation of an O2−-generating system in neutrophils,” Journal of Biological Chemistry, vol. 267, no. 27, pp. 19072–19074, 1992. View at Google Scholar · View at Scopus
  43. W. M. Nauseef, S. McCormick, J. Renee, K. G. Leidal, and R. A. Clark, “Functional domain in an arginine-rich carboxyl-terminal region of p47phox,” Journal of Biological Chemistry, vol. 268, no. 31, pp. 23646–23651, 1993. View at Google Scholar · View at Scopus
  44. S. I. Dikalov, A. E. Dikalova, A. T. Bikineyeva, H. H. H. W. Schmidt, D. G. Harrison, and K. K. Griendling, “Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production,” Free Radical Biology and Medicine, vol. 45, no. 9, pp. 1340–1351, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. I. Dahan, I. Issaeva, Y. Gorzalczany, N. Sigal, M. Hirshberg, and E. Pick, “Mapping of functional domains in the p22phox subunit of flavocytochrome b559 participating in the assembly of the NADPH oxidase complex by ‘peptide walking’,” Journal of Biological Chemistry, vol. 277, no. 10, pp. 8421–8432, 2002. View at Publisher · View at Google Scholar · View at Scopus