Table of Contents Author Guidelines Submit a Manuscript
International Journal of Inflammation
Volume 2011 (2011), Article ID 936109, 9 pages
http://dx.doi.org/10.4061/2011/936109
Research Article

Atherosclerotic Plaque Stability Is Affected by the Chemokine CXCL10 in Both Mice and Humans

1Department of Cardiology, Erasmus University Medical Center, 3522ZZ Rotterdam, The Netherlands
2Department of Immunology, Erasmus University Medical Center, 3522ZZ Rotterdam, The Netherlands
3Department of Cardiology, University Medical Center-Utrecht, 3584CX Utrecht, The Netherlands
4Department of Vascular Surgery, University Medical Center-Utrecht, 3584CX Utrecht, The Netherlands
5Department of Cell Biology and Genetics, Erasmus University Medical Center, 3522ZZ Rotterdam, The Netherlands
6Department of Bioengineering, Royal School of Mines, Imperial College, London SW7 2AZ, UK

Received 29 June 2011; Accepted 25 August 2011

Academic Editor: Elena Aikawa

Copyright © 2011 Dolf Segers et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Virmani, F. D. Kolodgie, A. P. Burke, A. Farb, and S. M. Schwartz, “Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 5, pp. 1262–1275, 2000. View at Google Scholar · View at Scopus
  2. C. Cheng, D. Tempel, R. van Haperen et al., “Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress,” Circulation, vol. 113, no. 23, pp. 2744–2753, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Cheng, D. Tempel, R. van Haperen et al., “Shear stress-induced changes in atherosclerotic plaque composition are modulated by chemokines,” Journal of Clinical Investigation, vol. 117, no. 3, pp. 616–626, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. D. Luster and J. V. Ravetch, “Biochemical characterization of a γ interferon-inducible cytokine (IP-10),” Journal of Experimental Medicine, vol. 166, no. 4, pp. 1084–1097, 1987. View at Google Scholar · View at Scopus
  5. M. Inngjerdingen, B. Damaj, and A. A. Maghazachi, “Expression and regulation of chemokine receptors in human natural killer cells,” Blood, vol. 97, no. 2, pp. 367–375, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Loetscher, P. Loetscher, N. Brass, E. Meese, and B. Moser, “Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization,” European Journal of Immunology, vol. 28, no. 11, pp. 3696–3705, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. M. J. Janatpour, S. Hudak, M. Sathe, J. D. Sedgwick, and L. M. McEvoy, “Tumor necrosis factor-dependent segmental control of MIG expression by high endothelial venules in inflamed lymph nodes regulates monocyte recruitment,” Journal of Experimental Medicine, vol. 194, no. 9, pp. 1375–1384, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. J. G. Hyun, G. Lee, J. B. Brown et al., “Anti-interferon-inducible chemokine, CXCL10, reduces colitis by impairing T helper-1 induction and recruitment in mice,” Inflammatory Bowel Diseases, vol. 11, no. 9, pp. 799–805, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. B. T. Fife, K. J. Kennedy, M. C. Paniagua et al., “CXL10 (IFN-γ-inducible protein-10) control of encephalitogenic CD4+ T cell accumulation in the central nervous system during experimental autoimmune encephalomyelitis,” Journal of Immunology, vol. 166, no. 12, pp. 7617–7624, 2001. View at Google Scholar · View at Scopus
  10. M. Loetscher, B. Gerber, P. Loetscher et al., “Chemokine receptor specific for IP10 and Mig: structure, function, and expression in activate T-Lymphocytes,” Journal of Experimental Medicine, vol. 184, no. 3, pp. 963–969, 1996. View at Google Scholar · View at Scopus
  11. A. D. Luster, “Mechanisms of disease: chemokines—chemotactic cytokines that mediate inflammation,” New England Journal of Medicine, vol. 338, no. 7, pp. 436–445, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. D. D. Taub, D. L. Longo, and W. J. Murphy, “Human interferon-inducible protein-10 induces mononuclear cell infiltration in mice and promotes the migration of human T lymphocytes into the peripheral tissues of human peripheral blood lymphocytes-SCID mice,” Blood, vol. 87, no. 4, pp. 1423–1431, 1996. View at Google Scholar · View at Scopus
  13. D. D. Taub, A. R. Lloyd, K. Conlon et al., “Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells,” Journal of Experimental Medicine, vol. 177, no. 6, pp. 1809–1814, 1993. View at Google Scholar · View at Scopus
  14. X. Wang, T. L. Yue, E. H. Ohlstein, C. P. Sung, and G. Z. Feuerstein, “Interferon-inducible protein-10 involves vascular smooth muscle cell migration, proliferation, and inflammatory response,” Journal of Biological Chemistry, vol. 271, no. 39, pp. 24286–24293, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Mach, A. Sauty, A. S. Iarossi et al., “Differential expression of three t lymphocyte-activating CXC chemokines by human atheroma-associated cells,” Journal of Clinical Investigation, vol. 104, no. 8, pp. 1041–1050, 1999. View at Google Scholar · View at Scopus
  16. E. A. Heller, E. Liu, A. M. Tager et al., “Chemokine CXCL10 promotes atherogenesis by modulating the local balance of effector and regulatory T cells,” Circulation, vol. 113, no. 19, pp. 2301–2312, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Cheng, R. van Haperen, M. de Waard et al., “Shear stress affects the intracellular distribution of eNOS: direct demonstration by a novel in vivo technique,” Blood, vol. 106, no. 12, pp. 3691–3698, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. B. A. N. Verhoeven, E. Velema, A. H. Schoneveld et al., “Athero-express: differential atherosclerotic plaque expression of mRNA and protein in relation to cardiovascular events and patient characteristics. Rationale and design,” European Journal of Epidemiology, vol. 19, no. 12, pp. 1127–1133, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. U. P. Singh, S. Singh, D. D. Taub, and J. W. Lillard, “Inhibition of IFN-γ-inducible protein-10 abrogates colitis in IL-10-/- mice,” Journal of Immunology, vol. 171, no. 3, pp. 1401–1406, 2003. View at Google Scholar · View at Scopus
  20. C. Nakajima, T. Mukai, N. Yamaguchi et al., “Neutralization of IFN-inducible protein 10/CXCL10 exacerbates experimental autoimmune encephalomyelitis,” European Journal of Immunology, vol. 32, no. 6, pp. 1784–1791, 2002. View at Publisher · View at Google Scholar
  21. N. R. Veillard, S. Steffens, G. Pelli et al., “Differential influence of chemokine receptors CCR2 and CXCR3 in development of atherosclerosis in vivo,” Circulation, vol. 112, no. 6, pp. 870–878, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. E. J. A. van Wanrooij, S. C. A. de Jager, T. van Es et al., “CXCR3 antagonist NBI-74330 attenuates atherosclerotic plaque formation in LDL receptor-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 2, pp. 251–257, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Khallou-Laschet, G. Caligiuri, E. Groyer et al., “The proatherogenic role of T cells requires cell division and is dependent on the stage of the disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 2, pp. 353–358, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. U. Schleicher, A. Hesse, and C. Bogdan, “Minute numbers of contaminant CD8+ T cells or CD11b +CD11c+ NK cells are the source of IFN-γ in IL-12/IL-18-stimulated mouse macrophage populations,” Blood, vol. 105, no. 3, pp. 1319–1328, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Gangur, F. E.R. Simons, and K. T. Hayglass, “Human IP-10 selectively promotes dominance of polyclonally activated and environmental antigendriven IFN-γ over IL-4 responses,” FASEB Journal, vol. 12, no. 9, pp. 705–713, 1998. View at Google Scholar
  26. E. J. Harvey and D. P. Ramji, “Interferon-γ and atherosclerosis: pro- or anti-atherogenic?” Cardiovascular Research, vol. 67, no. 1, pp. 11–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Schroder, P. J. Hertzog, T. Ravasi, and D. A. Hume, “Interferon-γ: an overview of signals, mechanisms and functions,” Journal of Leukocyte Biology, vol. 75, no. 2, pp. 163–189, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. E. P. Amento, N. Ehsani, H. Palmer, and P. Libby, “Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells,” Arteriosclerosis and Thrombosis, vol. 11, no. 5, pp. 1223–1230, 1991. View at Google Scholar · View at Scopus
  29. M. Cella, D. Jarrossay, F. Faccheth et al., “Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon,” Nature Medicine, vol. 5, no. 8, pp. 919–923, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. E. A. Van Vré, J. M. Bosmans, I. Van Brussel et al., “Immunohistochemical characterisation of dendritic cells in human atherosclerotic lesions: possible pitfalls,” Pathology, vol. 43, no. 3, pp. 239–247, 2011. View at Publisher · View at Google Scholar
  31. E. A. Van Vré, V. Y. Hoymans, H. Bult et al., “Decreased number of circulating plasmacytoid dendritic cells in patients with atherosclerotic coronary artery disease,” Coronary Artery Disease, vol. 17, no. 3, pp. 243–248, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Niessner, M. S. Shin, O. Pryshchep, J. J. Goronzy, E. L. Chaikof, and C. M. Weyand, “Synergistic proinflammatory effects of the antiviral cytokine interferon-α and toll-like receptor 4 ligands in the atherosclerotic plaque,” Circulation, vol. 116, no. 18, pp. 2043–2052, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Rothenbacher, S. Müller-Scholze, C. Herder, W. Koenig, and H. Kolb, “Differential expression of chemokines, risk of stable coronary heart disease, and correlation with established cardiovascular risk markers,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 1, pp. 194–199, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Herder, J. Baumert, B. Thorand et al., “Chemokines and incident coronary heart disease: results from the MONICA/KORA Augsburg case-cohort study, 1984–2002,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 9, pp. 2147–2152, 2006. View at Publisher · View at Google Scholar · View at Scopus