Table of Contents Author Guidelines Submit a Manuscript
International Journal of Inflammation
Volume 2012, Article ID 819467, 10 pages
http://dx.doi.org/10.1155/2012/819467
Review Article

Th17 Response and Inflammatory Autoimmune Diseases

Department of Immunity and Inflammation, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA

Received 12 August 2011; Accepted 27 October 2011

Academic Editor: Petros Efthimiou

Copyright © 2012 Janelle C. Waite and Dimitris Skokos. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. E. Harrington, R. D. Hatton, P. R. Mangan et al., “Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages,” Nature Immunology, vol. 6, no. 11, pp. 1123–1132, 2005. View at Publisher · View at Google Scholar · View at PubMed
  2. C. L. Langrish, Y. Chen, W. M. Blumenschein et al., “IL-23 drives a pathogenic T cell population that induces autoimmune inflammation,” Journal of Experimental Medicine, vol. 201, no. 2, pp. 233–240, 2005. View at Publisher · View at Google Scholar · View at PubMed
  3. H. Park, Z. Li, X. O. Yang et al., “A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17,” Nature Immunology, vol. 6, no. 11, pp. 1133–1141, 2005. View at Publisher · View at Google Scholar · View at PubMed
  4. Y. Chung, S. H. Chang, G. J. Martinez et al., “Critical regulation of early Th17 cell differentiation by interleukin-1 signaling,” Immunity, vol. 30, no. 4, pp. 576–587, 2009. View at Publisher · View at Google Scholar · View at PubMed
  5. K. Hirahara, K. Ghoreschi, A. Laurence, X. P. Yang, Y. Kanno, and J. J. O'Shea, “Signal transduction pathways and transcriptional regulation in Th17 cell differentiation,” Cytokine and Growth Factor Reviews, vol. 21, no. 6, pp. 425–434, 2010. View at Publisher · View at Google Scholar · View at PubMed
  6. T. Korn, E. Bettelli, M. Oukka, and V. K. Kuchroo, “IL-17 and Th17 cells,” Annual Review of Immunology, vol. 27, pp. 485–517, 2009. View at Publisher · View at Google Scholar · View at PubMed
  7. C. E. Sutton, S. J. Lalor, C. M. Sweeney, C. F. Brereton, E. C. Lavelle, and K. H. G. Mills, “Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity,” Immunity, vol. 31, no. 2, pp. 331–341, 2009. View at Publisher · View at Google Scholar · View at PubMed
  8. L. Yang, D. E. Anderson, C. Baecher-Allan et al., “IL-21 and TGF-β are required for differentiation of human T(H)17 cells,” Nature, vol. 454, no. 7202, pp. 350–352, 2008. View at Publisher · View at Google Scholar · View at PubMed
  9. M. Veldhoen, R. J. Hocking, C. J. Atkins, R. M. Locksley, and B. Stockinger, “TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells,” Immunity, vol. 24, no. 2, pp. 179–189, 2006. View at Publisher · View at Google Scholar · View at PubMed
  10. M. Veldhoen, R. J. Hocking, R. A. Flavell, and B. Stockinger, “Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease,” Nature Immunology, vol. 7, no. 11, pp. 1151–1156, 2006. View at Publisher · View at Google Scholar · View at PubMed
  11. J. Das, G. Ren, L. Zhang et al., “Transforming growth factor β is dispensable for the molecular orchestration of Th17 cell differentiation,” Journal of Experimental Medicine, vol. 206, no. 11, pp. 2407–2416, 2009. View at Publisher · View at Google Scholar · View at PubMed
  12. K. Ghoreschi, A. Laurence, X. P. Yang et al., “Generation of pathogenic T(H) 17 cells in the absence of TGF-β 2 signalling,” Nature, vol. 467, no. 7318, pp. 967–971, 2010. View at Publisher · View at Google Scholar · View at PubMed
  13. I. I. Ivanov, B. S. McKenzie, L. Zhou et al., “The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells,” Cell, vol. 126, no. 6, pp. 1121–1133, 2006. View at Publisher · View at Google Scholar · View at PubMed
  14. T. Korn, E. Bettelli, W. Gao et al., “IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells,” Nature, vol. 448, no. 7152, pp. 484–487, 2007. View at Publisher · View at Google Scholar · View at PubMed
  15. R. Nurieva, X. O. Yang, G. Martinez et al., “Essential autocrine regulation by IL-21 in the generation of inflammatory T cells,” Nature, vol. 448, no. 7152, pp. 480–483, 2007. View at Publisher · View at Google Scholar · View at PubMed
  16. L. Guo, G. Wei, J. Zhu et al., “IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 32, pp. 13463–13468, 2009. View at Publisher · View at Google Scholar · View at PubMed
  17. A. N. Mathur, H. C. Chang, D. G. Zisoulis et al., “Stat3 and stat4 direct development of IL-17-secreting Th cells,” Journal of Immunology, vol. 178, no. 8, pp. 4901–4907, 2007. View at Google Scholar
  18. C. K. Wong, L. C. W. Lit, L. S. Tam, E. K. M. Li, P. T. Y. Wong, and C. W. K. Lam, “Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity,” Clinical Immunology, vol. 127, no. 3, pp. 385–393, 2008. View at Publisher · View at Google Scholar · View at PubMed
  19. C. A. Dinarello, “IL-18: AtH1-inducing, proinflammatory cytokine and new member of the IL-1 family,” Journal of Allergy and Clinical Immunology, vol. 103, no. 1, pp. 11–24, 1999. View at Google Scholar
  20. L. L. Reznikov, S. H. Kim, J. Y. Westcott et al., “IL-18 binding protein increases spontaneous and IL-1-induced prostaglandin production via inhibition of IFN-γ,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 5, pp. 2174–2179, 2000. View at Publisher · View at Google Scholar · View at PubMed
  21. C. T. Weaver, R. D. Hatton, P. R. Mangan, and L. E. Harrington, “IL-17 family cytokines and the expanding diversity of effector T cell lineages,” Annual Review of Immunology, vol. 25, pp. 821–852, 2007. View at Publisher · View at Google Scholar · View at PubMed
  22. S. L. Gaffen, “Structure and signalling in the IL-17 receptor family,” Nature Reviews Immunology, vol. 9, no. 8, pp. 556–567, 2009. View at Publisher · View at Google Scholar · View at PubMed
  23. H. Ishigame, S. Kakuta, T. Nagai et al., “Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses,” Immunity, vol. 30, no. 1, pp. 108–119, 2009. View at Publisher · View at Google Scholar · View at PubMed
  24. R. E. Kuestner, D. W. Taft, A. Haran et al., “Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F,” Journal of Immunology, vol. 179, no. 8, pp. 5462–5473, 2007. View at Google Scholar
  25. A. W. Ho and S. L. Gaffen, “IL-17RC: a partner in IL-17 signaling and beyond,” Seminars in Immunopathology, vol. 32, no. 1, pp. 33–42, 2010. View at Publisher · View at Google Scholar · View at PubMed
  26. J. K. Kolls and A. Lindén, “Interleukin-17 family members and inflammation,” Immunity, vol. 21, no. 4, pp. 467–476, 2004. View at Publisher · View at Google Scholar · View at PubMed
  27. P. Schwarzenberger, W. Huang, Y. Peng et al., “Requirement of endogenous stem cell factor and granulocyte-colony- stimulating factor for IL-17-mediated granulopoiesis,” Journal of Immunology, vol. 164, no. 9, pp. 4783–4789, 2000. View at Google Scholar
  28. P. Schwarzenberger, V. La Russa, A. Miller et al., “IL-17 stimulates granulopoiesis in mice: use of an alternate, novel gene therapy-derived method for in vivo evaluation of cytokines,” Journal of Immunology, vol. 161, no. 11, pp. 6383–6389, 1998. View at Google Scholar
  29. M. A. Stark, Y. Huo, T. L. Burcin, M. A. Morris, T. S. Olson, and K. Ley, “Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17,” Immunity, vol. 22, no. 3, pp. 285–294, 2005. View at Publisher · View at Google Scholar · View at PubMed
  30. L. Codarri, G. Gyülvészii, V. Tosevski et al., “RORγ3t drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation,” Nature Immunology, vol. 12, no. 6, pp. 560–567, 2011. View at Publisher · View at Google Scholar · View at PubMed
  31. M. El-Behi, B. Ciric, H. Dai et al., “The encephalitogenicity of T(H) 17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF,” Nature Immunology, vol. 12, no. 6, pp. 568–575, 2011. View at Publisher · View at Google Scholar · View at PubMed
  32. W. Hou, H. S. Kang, and B. S. Kim, “Th17 cells enhance viral persistence and inhibit T cell cytotoxicity in a model of chronic virus infection,” Journal of Experimental Medicine, vol. 206, no. 2, pp. 313–328, 2009. View at Publisher · View at Google Scholar · View at PubMed
  33. J. S. Stumhofer, A. Laurence, E. H. Wilson et al., “Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system,” Nature Immunology, vol. 7, no. 9, pp. 937–945, 2006. View at Publisher · View at Google Scholar · View at PubMed
  34. C. F. Anderson, J. S. Stumhofer, C. A. Hunter, and D. Sacks, “IL-27 regulates IL-10 and IL-17 from CD4+ cells in nonhealing Leishmania major infection,” Journal of Immunology, vol. 183, no. 7, pp. 4619–4627, 2009. View at Publisher · View at Google Scholar · View at PubMed
  35. C. A. Murphy, C. L. Langrish, Y. Chen et al., “Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation,” Journal of Experimental Medicine, vol. 198, no. 12, pp. 1951–1957, 2003. View at Publisher · View at Google Scholar · View at PubMed
  36. S. Nakae, A. Nambu, K. Sudo, and Y. Iwakura, “Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice,” Journal of Immunology, vol. 171, no. 11, pp. 6173–6177, 2003. View at Google Scholar
  37. H. Ogura, M. Murakami, Y. Okuyama et al., “Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction,” Immunity, vol. 29, no. 4, pp. 628–636, 2008. View at Publisher · View at Google Scholar · View at PubMed
  38. N. Sakaguchi, T. Takahashi, H. Hata et al., “Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice,” Nature, vol. 426, no. 6965, pp. 454–460, 2003. View at Publisher · View at Google Scholar · View at PubMed
  39. K. Hirota, M. Hashimoto, H. Yoshitomi et al., “T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+ Th cells that cause autoimmune arthritis,” Journal of Experimental Medicine, vol. 204, no. 1, pp. 41–47, 2007. View at Publisher · View at Google Scholar · View at PubMed
  40. Y. Iwakura, S. Saijo, Y. Kioka et al., “Autoimmunity induction by human T cell leukemia virus type 1 in transgenic mice that develop chronic inflammatory arthropathy resembling rheumatoid arthritis in humans,” Journal of Immunology, vol. 155, no. 3, pp. 1588–1598, 1995. View at Google Scholar
  41. Y. Iwakura, S. Nakae, S. Saijo, and H. Ishigame, “The roles of IL-17A in inflammatory immune responses and host defense against pathogens,” Immunological Reviews, vol. 226, no. 1, pp. 57–79, 2008. View at Publisher · View at Google Scholar · View at PubMed
  42. W. O'Connor Jr., M. Kamanaka, C. J. Booth et al., “A protective function for interleukin 17A in T cell-mediated intestinal inflammation,” Nature Immunology, vol. 10, no. 6, pp. 603–609, 2009. View at Publisher · View at Google Scholar · View at PubMed
  43. M. Leppkes, C. Becker, I. I. Ivanov et al., “RORγ-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F,” Gastroenterology, vol. 136, no. 1, pp. 257–267, 2009. View at Publisher · View at Google Scholar · View at PubMed
  44. A. Ogawa, A. Andoh, Y. Araki, T. Bamba, and Y. Fujiyama, “Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice,” Clinical Immunology, vol. 110, no. 1, pp. 55–62, 2004. View at Publisher · View at Google Scholar · View at PubMed
  45. X. O. Yang, H. C. Seon, H. Park et al., “Regulation of inflammatory responses by IL-17F,” Journal of Experimental Medicine, vol. 205, no. 5, pp. 1063–1075, 2008. View at Publisher · View at Google Scholar · View at PubMed
  46. R. Ito, M. Kita, M. Shin-Ya et al., “Involvement of IL-17A in the pathogenesis of DSS-induced colitis in mice,” Biochemical and Biophysical Research Communications, vol. 377, no. 1, pp. 12–16, 2008. View at Publisher · View at Google Scholar · View at PubMed
  47. L. A. Zenewicz, G. D. Yancopoulos, D. M. Valenzuela, A. J. Murphy, S. Stevens, and R. A. Flavell, “Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease,” Immunity, vol. 29, no. 6, pp. 947–957, 2008. View at Publisher · View at Google Scholar · View at PubMed
  48. S. Huber, N. Gagliani, E. Esplugues et al., “Th17 cells express interleukin-10 receptor and are controlled by Foxp3- and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner,” Immunity, vol. 34, no. 4, pp. 554–565, 2011. View at Publisher · View at Google Scholar · View at PubMed
  49. A. Chaudhry, R. Samstein, P. Treuting et al., “Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation,” Immunity, vol. 34, no. 4, pp. 566–578, 2011. View at Publisher · View at Google Scholar · View at PubMed
  50. Y. Chen, C. Haines, I. Gutcher et al., “Foxp3(+) regulatory T cells promote T helper 17 cell development in vivo through regulation of interleukin-2,” Immunity, vol. 34, no. 3, pp. 409–421, 2011. View at Publisher · View at Google Scholar · View at PubMed
  51. P. Pandiyan, H. R. Conti, L. Zheng et al., “CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model,” Immunity, vol. 34, no. 3, pp. 422–434, 2011. View at Google Scholar
  52. M. A. Lowes, T. Kikuchi, J. Fuentes-Duculan et al., “Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells,” Journal of Investigative Dermatology, vol. 128, no. 5, pp. 1207–1211, 2008. View at Publisher · View at Google Scholar · View at PubMed
  53. L. van der Fits, S. Mourits, J. S. A. Voerman et al., “Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis,” Journal of Immunology, vol. 182, no. 9, pp. 5836–5845, 2009. View at Publisher · View at Google Scholar · View at PubMed
  54. M. N. Hedrick, A. S. Lonsdorf, A. K. Shirakawa et al., “CCR6 is required for IL-23-induced psoriasis-like inflammation in mice,” Journal of Clinical Investigation, vol. 119, no. 8, pp. 2317–2329, 2009. View at Publisher · View at Google Scholar
  55. J. Lindroos, L. Svensson, H. Norsgaard et al., “IL-23-mediated epidermal hyperplasia is dependent on IL-6,” Journal of Investigative Dermatology, vol. 131, no. 5, pp. 1110–1118, 2011. View at Publisher · View at Google Scholar · View at PubMed
  56. H. L. Rizzo, S. Kagami, K. G. Phillips, S. E. Kurtz, S. L. Jacques, and A. Blauvelt, “IL-23-mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A,” Journal of Immunology, vol. 186, no. 3, pp. 1495–1502, 2011. View at Publisher · View at Google Scholar · View at PubMed
  57. K. Nakajima, T. Kanda, M. Takaishi et al., “Distinct roles of IL-23 and IL-17 in the development of psoriasis-like lesions in a mouse model,” Journal of Immunology, vol. 186, no. 7, pp. 4481–4489, 2011. View at Publisher · View at Google Scholar · View at PubMed
  58. A. Nakajima, T. Matsuki, M. Komine et al., “TNF, but not IL-6 and IL-17, is crucial for the development of T cell-independent psoriasis-like dermatitis in Il1rn-/- mice,” Journal of Immunology, vol. 185, no. 3, pp. 1887–1893, 2010. View at Publisher · View at Google Scholar · View at PubMed
  59. B. Ciric, M. El-behi, R. Cabrera, G. X. Zhang, and A. Rostami, “IL-23 drives pathogenic IL-17-producing CD8+ T cells,” Journal of Immunology, vol. 182, no. 9, pp. 5296–5305, 2009. View at Publisher · View at Google Scholar · View at PubMed
  60. J. A. Emamaullee, J. Davis, S. Merani et al., “Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice,” Diabetes, vol. 58, no. 6, pp. 1302–1311, 2009. View at Publisher · View at Google Scholar · View at PubMed
  61. I. I. Ivanov, R. D. L. Frutos, N. Manel et al., “Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine,” Cell Host and Microbe, vol. 4, no. 4, pp. 337–349, 2008. View at Publisher · View at Google Scholar · View at PubMed
  62. H. J. Wu, I. I. Ivanov, J. Darce et al., “Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells,” Immunity, vol. 32, no. 6, pp. 815–827, 2010. View at Publisher · View at Google Scholar · View at PubMed
  63. S. Abdollahi-Roodsaz, L. A. B. Joosten, M. I. Koenders et al., “Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis,” Journal of Clinical Investigation, vol. 118, no. 1, pp. 205–216, 2008. View at Publisher · View at Google Scholar · View at PubMed
  64. H. Yoshitomi, N. Sakaguchi, K. Kobayashi et al., “A role for fungal β-glucans and their receptor dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice,” Journal of Experimental Medicine, vol. 201, no. 6, pp. 949–960, 2005. View at Publisher · View at Google Scholar · View at PubMed
  65. M. S. Sundrud, S. B. Koralov, M. Feuerer et al., “Halofuginone inhibits th17 cell differentiation by activating the amino acid starvation response,” Science, vol. 324, no. 5932, pp. 1334–1338, 2009. View at Publisher · View at Google Scholar · View at PubMed
  66. J. R. Huh, M. W.L. Leung, P. Huang et al., “Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγ3t activity,” Nature, vol. 472, no. 7344, pp. 486–490, 2011. View at Publisher · View at Google Scholar · View at PubMed
  67. A. Awasthi and V. Kuchroo, “Value added: neural progenitor cells suppress inflammation and autoimmunity,” Immunity, vol. 35, no. 2, pp. 156–157, 2011. View at Publisher · View at Google Scholar · View at PubMed
  68. W. Cao, Y. Yang, Z. Wang et al., “Leukemia inhibitory factor inhibits T helper 17 cell differentiation and confers treatment effects of neural progenitor cell therapy in autoimmune disease,” Immunity, vol. 35, no. 2, pp. 273–284, 2011. View at Publisher · View at Google Scholar · View at PubMed
  69. S. Agarwal, R. Misra, and A. Aggarwal, “Interleukin 17 levels are increased in juvenile idiopathic arthritis synovial fluid and induce synovial fibroblasts to produce proinflammatory cytokines and matrix metalloproteinases,” Journal of Rheumatology, vol. 35, no. 3, pp. 515–519, 2008. View at Google Scholar
  70. F. C. Liu, D. M. Chang, J. H. Lai et al., “Autoimmune hepatitis with raised alpha-fetoprotein level as the presenting symptoms of systemic lupus erythematosus: a case report,” Rheumatology International, vol. 27, no. 5, pp. 489–491, 2007. View at Publisher · View at Google Scholar · View at PubMed
  71. C. K. Wong, C. Y. Ho, E. K. Li, and C. W. K. Lam, “Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus,” Lupus, vol. 9, no. 8, pp. 589–593, 2000. View at Google Scholar
  72. M. Chabaud, F. Fossiez, J. L. Taupin, and P. Miossec, “Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines,” Journal of Immunology, vol. 161, no. 1, pp. 409–414, 1998. View at Google Scholar
  73. K. Venken, N. Hellings, K. Hensen, J. L. Rummens, and P. Stinissen, “Memory CD4+CD127high T cells from patients with multiple sclerosis produce IL-17 in response to myelin antigens,” Journal of Neuroimmunology, vol. 226, no. 1-2, pp. 185–191, 2010. View at Publisher · View at Google Scholar · View at PubMed
  74. H. Kebir, I. Ifergan, J. I. Alvarez et al., “Preferential recruitment of interferon-γ-expressing TH17 cells in multiple sclerosis,” Annals of Neurology, vol. 66, no. 3, pp. 390–402, 2009. View at Publisher · View at Google Scholar · View at PubMed
  75. B. M. Segal, C. S. Constantinescu, A. Raychaudhuri, L. Kim, R. Fidelus-Gort, and L. H. Kasper, “Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study,” The Lancet Neurology, vol. 7, no. 9, pp. 796–804, 2008. View at Publisher · View at Google Scholar · View at PubMed
  76. A. M. Patel and L. W. Moreland, “Interleukin-6 inhibition for treatment of rheumatoid arthritis: a review of tocilizumab therapy,” Drug Design, Development and Therapy, vol. 4, pp. 263–278, 2010. View at Publisher · View at Google Scholar · View at PubMed
  77. M. Geyer and U. Müller-Ladner, “Actual status of antiinterleukin-1 therapies in rheumatic diseases,” Current Opinion in Rheumatology, vol. 22, no. 3, pp. 246–251, 2010. View at Publisher · View at Google Scholar · View at PubMed
  78. M. C. Genovese, F. van den Bosch, S. A. Roberson et al., “LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I randomized, double-blind, placebo-controlled, proof-of-concept study,” Arthritis and Rheumatism, vol. 62, no. 4, pp. 929–939, 2010. View at Publisher · View at Google Scholar · View at PubMed
  79. P. C. M. Res, G. Piskin, O. J. de Boer et al., “Overrepresentation of IL-17A and IL-22 producing CD8 T cells in lesional skin suggests their involvement in the pathogenesis of psoriasis,” PLoS ONE, vol. 5, no. 11, Article ID e14108, 2010. View at Publisher · View at Google Scholar · View at PubMed
  80. N. J. Wilson, K. Boniface, J. R. Chan et al., “Development, cytokine profile and function of human interleukin 17-producing helper T cells,” Nature Immunology, vol. 8, no. 9, pp. 950–957, 2007. View at Publisher · View at Google Scholar · View at PubMed
  81. A. Gottlieb, A. Menter, A. Mendelsohn et al., “Ustekinumab, a human interleukin 12/23 monoclonal antibody, for psoriatic arthritis: randomised, double-blind, placebo-controlled, crossover trial,” The Lancet, vol. 373, no. 9664, pp. 633–640, 2009. View at Publisher · View at Google Scholar
  82. C. E.M. Griffiths, “Comparing biological therapies in psoriasis: implications for clinical practice,” Journal of the European Academy of Dermatology and Venereology, vol. 24, supplement 6, pp. 10–14, 2010. View at Publisher · View at Google Scholar · View at PubMed
  83. R. H. Duerr, K. D. Taylor, S. R. Brant et al., “A genome-wide association study identifies IL23R as an inflammatory bowel disease gene,” Science, vol. 314, no. 5804, pp. 1461–1463, 2006. View at Publisher · View at Google Scholar · View at PubMed
  84. F. Annunziato, L. Cosmi, V. Santarlasci et al., “Phenotypic and functional features of human Th17 cells,” Journal of Experimental Medicine, vol. 204, no. 8, pp. 1849–1861, 2007. View at Publisher · View at Google Scholar · View at PubMed
  85. M. A. Kleinschek, K. Boniface, S. Sadekova et al., “Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation,” Journal of Experimental Medicine, vol. 206, no. 3, pp. 525–534, 2009. View at Publisher · View at Google Scholar · View at PubMed
  86. C. L. Leonardi, A. B. Kimball, K. A. Papp et al., “Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1),” The Lancet, vol. 371, no. 9625, pp. 1665–1674, 2008. View at Publisher · View at Google Scholar · View at PubMed
  87. R. P. Nair, K. C. Duffin, C. Helms et al., “Genome-wide scan reveals association of psoriasis with IL-23 and NF-κB pathways,” Nature Genetics, vol. 41, no. 2, pp. 199–204, 2009. View at Publisher · View at Google Scholar · View at PubMed
  88. A. M. Huber, I. Gaboury, D. A. Cabral et al., “Prevalent vertebral fractures among children initiating glucocorticoid therapy for the treatment of rheumatic disorders,” Arthritis Care and Research, vol. 62, no. 4, pp. 516–526, 2010. View at Publisher · View at Google Scholar · View at PubMed
  89. S. Taleb, M. Romain, B. Ramkhelawon et al., “Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis,” Journal of Experimental Medicine, vol. 206, no. 10, pp. 2067–2077, 2009. View at Publisher · View at Google Scholar · View at PubMed
  90. K. Kisand, A. S. Bøe Wolff, K. T. Podkrajšek et al., “Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines,” Journal of Experimental Medicine, vol. 207, no. 2, pp. 299–308, 2010. View at Publisher · View at Google Scholar · View at PubMed
  91. E. G. Bywaters, “Still's disease in the adult,” Annals of the Rheumatic Diseases, vol. 30, no. 2, pp. 121–133, 1971. View at Google Scholar
  92. A. Ohta, M. Yamaguchi, H. Kaneoka, T. Nagayoshi, and M. Hiida, “Adult Still's disease: review of 228 cases from the literature,” Journal of Rheumatology, vol. 14, no. 6, pp. 1139–1146, 1988. View at Google Scholar
  93. D. Y. Chen, J. L. Lan, F. J. Lin, and T. Y. Hsieh, “Proinflammatory cytokine profiles in sera and pathological tissues of patients with active untreated adult onset still's disease,” Journal of Rheumatology, vol. 31, no. 11, pp. 2189–2198, 2004. View at Google Scholar
  94. D. Y. Chen, J. L. Lan, F. J. Lin, T. Y. Hsieh, and M. C. Wen, “Predominance of Th1 cytokine in peripheral blood and pathological tissues of patients with active untreated adult onset Still's disease,” Annals of the Rheumatic Diseases, vol. 63, no. 10, pp. 1300–1306, 2004. View at Publisher · View at Google Scholar · View at PubMed
  95. J. H. Choi, C. H. Suh, Y. M. Lee et al., “Serum cytokine profiles in patients with adult onset Still's disease,” Journal of Rheumatology, vol. 30, no. 11, pp. 2422–2427, 2003. View at Google Scholar
  96. M. Kawashima, M. Yamamura, M. Taniai et al., “Levels of interleukin-18 and its binding inhibitors in the blood circulation of patients with adult-onset Still's disease,” Arthritis and Rheumatism, vol. 44, no. 3, pp. 550–560, 2001. View at Publisher · View at Google Scholar
  97. D. Y. Chen, Y. M. Chen, J. L. Lan, C. C. Lin, H. H. Chen, and C. W. Hsieh, “Potential role of th17 cells in the pathogenesis of adult-onset Still's disease,” Rheumatology, vol. 49, no. 12, Article ID keq284, pp. 2305–2312, 2010. View at Publisher · View at Google Scholar · View at PubMed
  98. J. Yang, Y. Chu, X. Yang et al., “Th17 and natural treg cell population dynamics in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 60, no. 5, pp. 1472–1483, 2009. View at Publisher · View at Google Scholar · View at PubMed
  99. H. Y. Jen, Y. H. Chuang, S. C. Lin, B. L. Chiang, and Y. H. Yang, “Increased serum interleukin-17 and peripheral Th17 cells in children with acute Henoch-Schönlein purpura,” Pediatric Allergy and Immunology, vol. 22, no. 8, pp. 862–868, 2011. View at Publisher · View at Google Scholar · View at PubMed
  100. H. Chang, H. Hanawa, T. Yoshida et al., “Alteration of IL-17 related protein expressions in experimental autoimmune myocarditis and inhibition of IL-17 by IL-10-Ig fusion gene transfer,” Circulation Journal, vol. 72, no. 5, pp. 813–819, 2008. View at Publisher · View at Google Scholar
  101. Z. Su, C. Sun, C. Zhou et al., “HMGB 1 blockade attenuates experimental autoimmune myocarditis possibly by suppressing Th17-cell expansion,” European Journal of Immunology, vol. 41, no. 12, pp. 3586–3595, 2011. View at Publisher · View at Google Scholar · View at PubMed
  102. A. Valaperti, R. R. Marty, G. Kania et al., “CD11b+ monocytes abrogate Th17 CD4+ T cell-mediated experimental autoimmune myocarditis,” Journal of Immunology, vol. 180, no. 4, pp. 2686–2695, 2008. View at Google Scholar