Table of Contents Author Guidelines Submit a Manuscript
International Journal of Inflammation
Volume 2013, Article ID 438412, 6 pages
http://dx.doi.org/10.1155/2013/438412
Review Article

Inflammation in Retinal Vein Occlusion

Department of Ophthalmology, Columbia University Medical Center, New York, NY 10032, USA

Received 31 January 2013; Accepted 5 March 2013

Academic Editor: David A. Hollander

Copyright © 2013 Avnish Deobhakta and Louis K. Chang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Shahid, P. Hossain, and W. M. Amoaku, “The management of retinal vein occlusion: is interventional ophthalmology the way forward?” British Journal of Ophthalmology, vol. 90, no. 5, pp. 627–639, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. S. Hayreh, M. B. Zimmerman, and P. Podhajsky, “Incidence of various types of retinal vein occlusion and their recurrence and demographic characteristics,” American Journal of Ophthalmology, vol. 117, no. 4, pp. 429–441, 1994. View at Google Scholar · View at Scopus
  3. H. Koizumi, D. C. Ferrara, C. Bruè, and R. F. Spaide, “Central retinal vein occlusion case-control study,” American Journal of Ophthalmology, vol. 144, no. 6, pp. 858–863, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. The Eye Disease Case-Control Study Group, “Risk factors for central retinal vein occlusion the eye disease case-control study group,” Archives of Ophthalmology, vol. 114, no. 5, pp. 545–554, 1996. View at Google Scholar · View at Scopus
  5. M. L. Shahsuvaryan, “Therapeutic potential of intravitreal pharmaco-therapy in retinal vein occlusion,” Indian Journal of Ophthalmology, vol. 5, no. 6, pp. 759–770, 2012. View at Google Scholar
  6. R. D. Sperduto, R. Hiller, E. Chew et al., “Risk factors for hemiretinal vein occlusion: comparison with risk factors for central and branch retinal vein occlusion: the eye disease case-control study,” Ophthalmology, vol. 105, no. 5, pp. 765–771, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Jain, J. R. Hurst, J. R. Thompson, and T. Eke, “UK national survey of current practice and experience of intravitreal triamcinolone acetonide,” Eye, vol. 23, no. 5, pp. 1164–1167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Ladjimi, H. Zeghidi, S. Ben Yahia et al., “Intravitreal injection of triamcinolone acetonide for the treatment of macular edema,” Journal Francais d'Ophtalmologie, vol. 28, no. 7, pp. 749–757, 2005. View at Google Scholar · View at Scopus
  9. The Branch Vein Occlusion Study Group, “Argon laser photocoagulation for macular edema in branch vein occlusion,” American Journal of Ophthalmology, vol. 98, no. 3, pp. 271–282, 1984. View at Google Scholar
  10. P. A. Campochiaro, J. S. Heier, L. Feiner et al., “Ranibizumab for macular edema following branch retinal vein occlusion: six-month primary end point results of a phase III study,” Ophthalmology, vol. 117, no. 6, pp. 1102.e1–1112.e1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. J. McGimpsey, J. V. Woodside, C. Cardwell, M. Cahill, and U. Chakravarthy, “Homocysteine, methylenetetrahydrofolate reductase C677T polymorphism, and risk of retinal vein occlusion: a meta-analysis,” Ophthalmology, vol. 116, no. 9, pp. 1778–1787, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. B. Blice and G. C. Brown, “. Retinal vascular occlusive disease,” in Diseases of the Retina and the Vitreous, R. F. Spaide, Ed., pp. 109–127, WB Saunders, Philadelphia, Pa, USA, 1999. View at Google Scholar
  13. R. Ross, “Atherosclerosis-an inflammatory disease,” New England Journal of Medicine, vol. 340, pp. 115–126, 1999. View at Google Scholar
  14. H. C. Stary, A. B. Chandler, S. Glagov et al., “A definition of initial, fatty streak, and intermediate lesions of atherosclerosis: a report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association,” Circulation, vol. 89, no. 5, pp. 2462–2478, 1994. View at Google Scholar · View at Scopus
  15. N. Cheung, R. Klein, J. W. Jie et al., “Traditional and novel cardiovascular risk factors for retinal vein occlusion: the multiethnic study of atherosclerosis,” Investigative Ophthalmology and Visual Science, vol. 49, no. 10, pp. 4297–4302, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Steinbrugger, A. Haas, R. Maier et al., “Analysis of inflammation- and atherosclerosis-related gene polymorphisms in branch retinal vein occlusion,” Molecular Vision, vol. 15, pp. 609–618, 2009. View at Google Scholar · View at Scopus
  17. R. Maier, I. Steinbrugger, A. Haas et al., “Role of inflammation-related gene polymorphisms in patients with central retinal vein occlusion,” Ophthalmology, vol. 118, no. 6, pp. 1125–1129, 2011. View at Google Scholar
  18. Y.-J. Song, K.-I. Cho, S.-M. Kim et al., “The predictive value of retinal vascular findings for carotid artery atherosclerosis: are further recommendations with regard to carotid atherosclerosis screening needed?” Heart and Vessels, 2012. View at Publisher · View at Google Scholar
  19. A. Aydin Kaderli, B. Kaderli, S. Gullulu, and R. Avci, “Impaired aortic stiffness and pulse wave velocity in patients with branch retinal vein occlusion,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 248, no. 3, pp. 369–374, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. W. R. Green, C. C. Chan, G. M. Hutchins, and J. M. Terry, “Central retinal vein occlusion: a prospective histopathologic study of 29 eyes in 28 cases,” Retina, vol. 1, no. 1, pp. 27–55, 1981. View at Google Scholar · View at Scopus
  21. F. J. Neumann, I. Ott, N. Marx et al., “Effect of human recombinant interleukin-6 and interleukin-8 on monocyte procoagulant activity,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, pp. 3399–3405, 1997. View at Google Scholar
  22. T. van der Poll, H. R. Buller, H. Ten Cate et al., “Activation of coagulation after administration of tumor necrosis factor to normal subjects,” New England Journal of Medicine, vol. 322, no. 23, pp. 1622–1627, 1990. View at Google Scholar
  23. E. Ulfhammer, P. Larsson, L. Karlsson et al., “TNF-α mediated suppression of tissue type plasminogen activator expression in vascular endothelial cells is NF-κB- and p38 MAPK-dependent,” Journal of Thrombosis and Haemostasis, vol. 4, no. 8, pp. 1781–1789, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. C. J. Boushey, S. A. A. Beresford, G. S. Omenn, and A. G. Motulsky, “A quantitative assessment of plasma homocysteine as a risk factor for vascular disease: probable benefits of increasing folic acid intakes,” Journal of the American Medical Association, vol. 274, no. 13, pp. 1049–1057, 1995. View at Google Scholar · View at Scopus
  25. J. C. Chambers, A. McGregor, J. Jean-Marie, and J. S. Kooner, “Acute hyperhomocysteinaemia and endothelial dysfunction,” The Lancet, vol. 351, no. 9095, pp. 36–37, 1998. View at Google Scholar · View at Scopus
  26. K. A. Hajjar, “Homocysteine-induced modulation of tissue plasminogen activator binding to its endothelial cell membrane receptor,” Journal of Clinical Investigation, vol. 91, no. 6, pp. 2873–2879, 1993. View at Google Scholar · View at Scopus
  27. G. M. Rodgers and M. T. Conn, “Homocysteine, an atherogenic stimulus, reduces protein C activation by arterial and venous endothelial cells,” Blood, vol. 75, no. 4, pp. 895–901, 1990. View at Google Scholar · View at Scopus
  28. M. Weger, O. Stanger, H. Deutschmann et al., “Hyperhomocyst(e)inemia and MTHFR C677T genotypes in patients with central retinal vein occlusion,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 240, no. 4, pp. 286–290, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Cahill, M. Karabatzaki, R. Meleady et al., “Raised plasma homocysteine as a risk factor for retinal vascular occlusive disease,” British Journal of Ophthalmology, vol. 84, no. 2, pp. 154–157, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Kesler, V. Shalev, O. Rogowski et al., “Comparative analysis of homocysteine concentrations in patients with retinal vein occlusion versus thrombotic and atherosclerotic disorders,” Blood Coagulation and Fibrinolysis, vol. 19, no. 4, pp. 259–262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Noma, H. Funatsu, T. Mimura, S. Harino, S. Eguchi, and S. Hori, “Pigment epithelium-derived factor and vascular endothelial growth factor in branch retinal vein occlusion with macular edema,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 248, no. 11, pp. 1559–1565, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Noma, H. Funatsu, T. Mimura, S. Eguchi, and K. Shimada, “Inflammatory factors in major and macular branch retinal vein occlusion,” Ophthalmologica, vol. 227, no. 3, pp. 146–152, 2012. View at Google Scholar
  33. T. Yoshimura, K. H. Sonoda, M. Sugahara et al., “Comprehensive analysis of inflammatory immune mediators in vitreoretinal diseases,” PLoS ONE, vol. 4, no. 12, Article ID e8158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Noma, H. Funatsu, T. Mimura, and S. Eguchi, “Vitreous inflammatory factors and serous retinal detachment in central retinal vein occlusion: a case control series,” Journal of Inflammation, vol. 8, article 38, 2011. View at Publisher · View at Google Scholar
  35. H. Noma, H. Funatsu, T. Mimura, M. Tatsugawa, K. Shimada, and S. Eguchi, “Vitreous inflammatory factors and serous macular detachment in branch retinal vein occlusion,” Retina, vol. 32, no. 1, pp. 86–91, 2012. View at Publisher · View at Google Scholar
  36. J. W. Lim, “Intravitreal bevacizumab and cytokine levels in major and macular branch retinal vein occlusion,” Ophthalmologica, vol. 225, no. 3, pp. 150–154, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. A. P. Adamis, “Is diabetic retinopathy an inflammatory disease?” British Journal of Ophthalmology, vol. 86, no. 4, pp. 363–365, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Nakao, M. Arima, K. Ishikawa et al., “Intravitreal anti-VEGF therapy blocks inflammatory cell infiltration and re-entry into the circulation in retinal angiogenesis,” Investigative Ophthalmology & Visual Science, vol. 53, no. 7, pp. 4323–4328, 2012. View at Google Scholar
  39. A. Ossewaarde-Van Norel and A. Rothova, “Clinical review: update on treatment of inflammatory macular edema,” Ocular Immunology and Inflammation, vol. 19, no. 1, pp. 75–83, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Kaur, W. S. Foulds, and E. A. Ling, “Blood-retinal barrier in hypoxic ischaemic conditions: basic concepts, clinical features and management,” Progress in Retinal and Eye Research, vol. 27, no. 6, pp. 622–647, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. J. B. Jonas, “Intraocular availability of triamcinolone acetonide after intravitreal injection,” American Journal of Ophthalmology, vol. 137, no. 3, pp. 560–562, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. J. B. Jonas, “Concentration of intravitreally injected triamcinolone acetonide in aqueous humour,” British Journal of Ophthalmology, vol. 86, no. 9, p. 1066, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Ip, A. Kahana, and M. Altaweel, “Treatment of central retinal vein occlusion with triamcinolone acetonide: an optical coherence tomography study,” Seminars in Ophthalmology, vol. 18, no. 2, pp. 67–73, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. J. B. Jonas, I. Akkoyun, B. Kamppeter, I. Kreissig, and R. F. Degenring, “Intravitreal triamcinolone acetonide for treatment of central retinal vein occlusion,” European Journal of Ophthalmology, vol. 15, no. 6, pp. 751–758, 2005. View at Google Scholar · View at Scopus
  45. M. S. Ip, I. U. Scott, P. C. vanVeldhuisen et al., “A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with observation to treat vision loss associated with macular edema secondary to central retinal vein occlusion: the standard care vs corticosteroid for retinal vein occlusion (SCORE) study report 5,” Archives of Ophthalmology, vol. 127, no. 9, pp. 1101–1114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. I. U. Scott, M. S. Ip, P. C. vanVeldhuisen et al., “A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with standard care to treat vision loss associated with macular edema secondary to branch retinal vein occlusion: the standard care vs corticosteroid for retinal vein occlusion (SCORE) study report 6,” Archives of Ophthalmology, vol. 127, no. 9, pp. 1115–1128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. J. A. Haller, F. Bandello, R. Belfort et al., “Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion,” Ophthalmology, vol. 117, no. 6, pp. 1134–1146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. W. S. Yeh, J. A. Haller, P. Lanzetta et al., “Effect of the duration of macular edema on clinical outcomes in retinal vein occlusion treated with dexamethasone intravitreal implant,” Ophthalmology, vol. 119, no. 6, pp. 1190–1198, 2012. View at Google Scholar
  49. M. Reibaldi, A. Russo, M. Zagari et al., “Resolution of persistent cystoid macular edema due to central retinal vein occlusion in a vitrectomized eye following intravitreal implant of dexamethasone 0.7 mg,” Case Reports in Ophthalmology, vol. 3, no. 1, pp. 30–34, 2012. View at Publisher · View at Google Scholar
  50. S. Kiss, “Moving beyond laser in treatment of DME, BRVO,” Retina Today, pp. 48–50, 2012. View at Google Scholar
  51. P. A. Campochiaro, J. S. Heier, L. Feiner et al., “Ranibizumab for macular edema following branch retinal vein occlusion six-month primary end point results of a phase III study,” Ophthalmology, vol. 117, no. 6, pp. 1102–1112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. D. M. Brown, P. A. Campochiaro, R. P. Singh et al., “Ranibizumab for macular edema following central retinal vein occlusion six-month primary end point results of a phase III study,” Ophthalmology, vol. 117, no. 6, pp. 1124–1133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. P. A. Campochiaro, D. M. Brown, C. C. Awh et al., “Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: twelve-month outcomes of a phase III study,” Ophthalmology, vol. 118, no. 10, pp. 2041–2049, 2011. View at Publisher · View at Google Scholar
  54. D. M. Brown, P. A. Campochiaro, R. B. Bhisitkul et al., “Sustained benefits from ranibizumab for macular edema following branch retinal vein occlusion: 12-month outcomes of a phase III study,” Ophthalmology, vol. 118, no. 8, pp. 1594–1602, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. E. J. Chung, Y. T. Hong, S. C. Lee, O. W. Kwon, and H. J. Koh, “Prognostic factors for visual outcome after intravitreal bevacizumab for macular edema due to branch retinal vein occlusion,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 246, no. 9, pp. 1241–1247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. F. Prager, S. Michels, K. Kriechbaum et al., “Intravitreal bevacizumab (Avastin) for macular oedema secondary to retinal vein occlusion: 12-month results of a prospective clinical trial,” British Journal of Ophthalmology, vol. 93, no. 4, pp. 452–456, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Kondo, N. Kondo, Y. Ito et al., “Intravitreal injection of bevacizumab for macular edema secondary to branch retinal vein occlusion: results after 12 months and multiple regression analysis,” Retina, vol. 29, no. 9, pp. 1242–1248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Wu, J. F. Arevalo, M. H. Berrocal et al., “Comparison of two doses of intravitreal bevacizumab as primary treatment for macular edema secondary to branch retinal vein occlusions: results of the Pan American collaborative retina study group at 24 months,” Retina, vol. 29, no. 10, pp. 1396–1403, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Ach, A. E. Hoeh, K. B. Schaal, A. F. Scheuerle, and S. Dithmar, “Predictive factors for changes in macular edema in intravitreal bevacizumab therapy of retinal vein occlusion,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 248, no. 2, pp. 155–159, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. D. L. J. Epstein, P. V. Algvere, G. von Wendt, S. Seregard, and A. Kvanta, “Bevacizumab for macular edema in central retinal vein occlusion: a prospective, randomized, double-masked clinical study,” Ophthalmology, vol. 119, no. 6, pp. 1184–1189, 2012. View at Publisher · View at Google Scholar
  61. H. Y. Wang, X. Li, Y. S. Wang et al., “Intravitreal injection of bevacizumab alone or with triamcinolone acetonide for treatment of macular edema caused by central retinal vein occlusion,” International Journal of Ophthalmology, vol. 4, no. 1, pp. 89–94, 2011. View at Google Scholar
  62. M. A. Singer, D. J. Bell, P. Woods et al., “Effect of combination therapy with bevacizumab and dexamethasone intravitreal implant in patients with retinal vein occlusion,” Retina, vol. 32, no. 7, pp. 1289–1294, 2012. View at Publisher · View at Google Scholar