Table of Contents Author Guidelines Submit a Manuscript
International Journal of Inflammation
Volume 2013, Article ID 781024, 7 pages
http://dx.doi.org/10.1155/2013/781024
Research Article

Preoperative White Blood Cell Count and Risk of 30-Day Readmission after Cardiac Surgery

1The Dartmouth Institute for Health Policy and Clinical Practice, Departments of Medicine Section of Cardiology and Community and Family Medicine and Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
2Edmund Cohen Laboratory for Vascular Research, The University of the West Indies, Bridgetown, Barbados
3Department of Surgery, Concord Hospital, Concord, NH, USA
4Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
5Department of Surgery, Portsmouth Regional Hospital, Portsmouth, NH, USA
6Department of Surgery, Central Maine Medical Center, Lewiston, ME, USA
7Department of Surgery, Eastern Maine Medical Center, Bangor, ME, USA
8Department of Surgery, Maine Medical Center, Portland, ME, USA
9Department of Surgery, Catholic Medical Center, Manchester, NH, USA

Received 24 April 2013; Revised 26 June 2013; Accepted 26 June 2013

Academic Editor: Paulo Roberto Barbosa Evora

Copyright © 2013 Jeremiah R. Brown et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. F. Jencks, M. V. Williams, and E. A. Coleman, “Rehospitalizations among patients in the medicare fee-for-service program,” The New England Journal of Medicine, vol. 360, no. 14, pp. 1418–1428, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. The Patient Protection and Affordability Care (PPAC) Act, Section 3025, 2011.
  3. J. Angelelli, D. Gifford, O. Intrator, P. Gozalo, L. Laliberte, and V. Mor, “Access to postacute nursing home care before and after the BBA,” Health Affairs, vol. 21, no. 5, pp. 254–264, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Li, E. J. Armstrong, J. P. Parker, B. Danielsen, and P. S. Romano, “Hospital variation in readmission after coronary artery bypass surgery in California,” Circulation, vol. 5, no. 5, pp. 729–737, 2012. View at Google Scholar
  5. M. Madjid, I. Awan, J. T. Willerson, and S. W. Casscells, “Leukocyte count and coronary heart disease: implications for risk assessment,” Journal of the American College of Cardiology, vol. 44, no. 10, pp. 1945–1956, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Chen, R. P. Wildman, L. L. Hamm et al., “Association between inflammation and insulin resistance in U.S. nondiabetic adults: results from the Third National Health and Nutrition Examination Survey,” Diabetes Care, vol. 27, no. 12, pp. 2960–2965, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Q. Gan, S. F. P. Man, A. Senthilselvan, and D. D. Sin, “Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis,” Thorax, vol. 59, no. 7, pp. 574–580, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. D. N. Reddan, P. S. Klassen, L. A. Szczech et al., “White blood cells as a novel mortality predictor in haemodialysis patients,” Nephrology Dialysis Transplantation, vol. 18, no. 6, pp. 1167–1173, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. R. C. Bone, R. A. Balk, F. B. Cerra et al., “Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine,” Chest, vol. 101, no. 6, pp. 1644–1655, 1992. View at Google Scholar · View at Scopus
  10. R. C. Landis, J. M. Murkin, D. A. Stump et al., “Consensus statement: minimal criteria for reporting the systemic inflammatory response to cardiopulmonary bypass,” Heart Surgery Forum, vol. 13, no. 2, pp. E116–E123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. L. J. Dacey, J. DeSimone, J. H. Braxton et al., “Preoperative white blood cell count and mortality and morbidity after coronary artery bypass grafting,” Annals of Thoracic Surgery, vol. 76, no. 3, pp. 760–764, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Mehran, S. J. Pocock, E. Nikolsky et al., “A risk score to predict bleeding in patients with acute coronary syndromes,” Journal of the American College of Cardiology, vol. 55, no. 23, pp. 2556–2566, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Chung, M. A. Corriere, R. K. Veeraswamy et al., “Risk factors for late mortality after endovascular repair of the thoracic aorta,” Journal of Vascular Surgery, vol. 52, no. 3, pp. 549–554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. P. A. Linden, B. Y. Yeap, M. Y. Chang et al., “Morbidity of lung resection after prior lobectomy: results from the Veterans Affairs National Surgical Quality Improvement Program,” Annals of Thoracic Surgery, vol. 83, no. 2, pp. 425–432, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Madjid and O. Fatemi, “Components of the complete blood count as risk predictors for coronary heart disease: in-depth review and update,” Texas Heart Institute Journal, vol. 40, no. 1, pp. 17–29, 2013. View at Google Scholar
  16. G. D. Friedman, A. L. Klatsky, and A. B. Siegelaub, “The leukocyte count as a predictor of myocardial infarction,” The New England Journal of Medicine, vol. 290, no. 23, pp. 1275–1278, 1974. View at Google Scholar · View at Scopus
  17. Y. Maekawa, T. Anzai, T. Yoshikawa et al., “Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction: a possible role for left ventricular remodeling,” Journal of the American College of Cardiology, vol. 39, no. 2, pp. 241–246, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Gao, G.-X. Tong, X.-W. Zhang et al., “Interleukin-18 levels on admission are associated with mid-term adverse clinical events in patients with ST-segment elevation acute myocardial infarction undergoing percutaneous coronary intervention,” International Heart Journal, vol. 51, no. 2, pp. 75–81, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. H. V. Barron, C. P. Cannon, S. A. Murphy, E. Braunwald, and C. M. Gibson, “Association between white blood cell count, epicardial blood flow, myocardial perfusion, and clinical outcomes in the setting of acute myocardial infarction: a thrombolysis in myocardial infarction 10 substudy,” Circulation, vol. 102, no. 19, pp. 2329–2334, 2000. View at Google Scholar · View at Scopus
  20. J. Butler, G. M. Rocker, and S. Westaby, “Inflammatory response to cardiopulmonary bypass,” Annals of Thoracic Surgery, vol. 55, no. 2, pp. 552–559, 1993. View at Google Scholar · View at Scopus
  21. R. C. Landis and R. J. de Silva, “The systemic inflammatory response to cardiopulmonary bypass,” in Core Topics in Cardiac Anaesthesia, J. H. Mackay and J. E. Arrowsmith, Eds., Cambridge University Press, Cambridge, UK, 2012. View at Google Scholar
  22. K. M. Taylor, “SIRS—the systemic inflammatory response syndrome after cardiac operations,” Annals of Thoracic Surgery, vol. 61, no. 6, pp. 1607–1608, 1996. View at Publisher · View at Google Scholar · View at Scopus
  23. R. C. Landis, J. R. Brown, J. M. Murkin, D. S. Likosky, and R. A. Baker, “An evidence based review of pharmaceutical interventions to limit the systemic inflammatory response in coronary surgery,” Heart Surgery Forum, vol. 11, no. 5, pp. 1–12, 2008. View at Google Scholar
  24. G. Pilz, S. Kaab, E. Kreuzer, and K. Werdan, “Evaluation of definitions and parameters for sepsis assessment in patients after cardiac surgery,” Infection, vol. 22, no. 1, pp. 8–17, 1994. View at Google Scholar · View at Scopus
  25. F. Kerbaul, C. Guidon, P. J. Lejeune, M. Mollo, T. Mesana, and F. Gouin, “Hyperprocalcitonemia is related to noninfectious postoperative severe systemic inflammatory response syndrome associated with cardiovascular dysfunction after coronary artery bypass graft surgery,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 16, no. 1, pp. 47–53, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Hensel, T. Volk, W. D. Döcke et al., “Hyperprocalcitonemia in patients with noninfectious SIRS and pulmonary dysfunction associated with cardiopulmonary bypass,” Anesthesiology, vol. 89, no. 1, pp. 93–104, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. R. S. Carel and J. Eviatar, “Factors affecting leukocyte count in healthy adults,” Preventive Medicine, vol. 14, no. 5, pp. 607–619, 1985. View at Google Scholar · View at Scopus
  28. J. Litmathe, U. Boeken, G. Bohlen, D. Gursoy, C. Sucker, and P. Feindt, “Systemic inflammatory response syndrome after extracorporeal circulation: a predictive algorithm for the patient at risk,” Hellenic Journal of Cardiology, vol. 52, no. 6, pp. 493–500, 2011. View at Google Scholar · View at Scopus