Table of Contents Author Guidelines Submit a Manuscript
International Journal of Inflammation
Volume 2013, Article ID 980327, 7 pages
http://dx.doi.org/10.1155/2013/980327
Research Article

Haptoglobin Genotype-Dependent Anti-Inflammatory Signaling in CD163+ Macrophages

1Edmund Cohen Laboratory for Vascular Research, Chronic Disease Research Centre, The University of the West Indies Bridgetown BB11115, Barbados
2Eric Bywaters Centre for Vascular Inflammation, Faculty of Medicine, Imperial College London, London W12 0NN, UK
3Department of Life Sciences, University of Bedfordshire, Luton LU1 3JU, UK

Received 15 March 2013; Accepted 3 April 2013

Academic Editor: David A. Hart

Copyright © 2013 R. Clive Landis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. R. Moreno and V. Fuster, “New aspects in the pathogenesis of diabetic atherothrombosis,” Journal of the American College of Cardiology, vol. 44, no. 12, pp. 2293–2300, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. F. D. Kolodgie, H. K. Gold, A. P. Burke et al., “Intraplaque hemorrhage and progression of coronary atheroma,” The New England Journal of Medicine, vol. 349, no. 24, pp. 2316–2325, 2003. View at Google Scholar
  3. N. Takaya, C. Yuan, B. Chu et al., “Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques: a high-resolution magnetic resonance imaging study,” Circulation, vol. 111, no. 21, pp. 2768–2775, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. A. P. Levy, J. E. Levy, S. Kalet-Litman et al., “Haptoglobin genotype is a determinant of iron, lipid peroxidation, and macrophage accumulation in the atherosclerotic plaque,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 1, pp. 134–140, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. V. Finn, M. Nakano, R. Polavarapu et al., “Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques,” Journal of the American College of Cardiology, vol. 59, no. 2, pp. 166–177, 2012. View at Google Scholar
  6. J. J. Boyle, “Heme and haemoglobin direct macrophage Mhem phenotype and counter foam cell formation in areas of intraplaque haemorrhage,” Current Opinion in Lipidology, vol. 23, no. 5, pp. 453–461, 2012. View at Google Scholar
  7. J. J. Boyle, H. A. Harrington, E. Piper et al., “Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype,” American Journal of Pathology, vol. 174, no. 3, pp. 1097–1108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Philippidis, J. C. Mason, B. J. Evans et al., “Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery,” Circulation Research, vol. 94, no. 1, pp. 119–126, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. N. G. Abraham and G. Drummond, “CD163-mediated hemoglobin-heme uptake activates macrophage HO-1, providing an antiinflammatory function,” Circulation Research, vol. 99, no. 9, pp. 911–914, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. C. A. Schaer, G. Schoedon, A. Imhof, M. O. Kurrer, and D. J. Schaer, “Constitutive endocytosis of CD163 mediates hemoglobin-heme uptake and determines the noninflammatory and protective transcriptional response of macrophages to hemoglobin,” Circulation Research, vol. 99, no. 9, pp. 943–950, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. J. Boyle, M. Johns, T. Kampfer et al., “Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection,” Circulation Research, vol. 110, no. 1, pp. 20–33, 2012. View at Google Scholar
  12. J. J. Boyle, M. Johns, J. Lo et al., “Heme induces heme oxygenase 1 via Nrf2: role in the homeostatic macrophage response to intraplaque hemorrhage,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 11, pp. 2685–2691, 2011. View at Google Scholar
  13. M. M. Van Den Heuvel, C. P. Tensen, J. H. van As et al., “Regulation of CD163 on human macrophages: cross-linking of CD163 induces signaling and activation,” Journal of Leukocyte Biology, vol. 66, no. 5, pp. 858–866, 1999. View at Google Scholar · View at Scopus
  14. M. Ritter, C. Buechler, M. Kapinsky, and G. Schmitz, “Interaction of CD163 with the regulatory subunit of casein kinase II, (CKII) and dependence of CD163 signaling on CKII and protein kinase C,” European Journal of Immunology, vol. 31, no. 4, pp. 999–1009, 2001. View at Google Scholar
  15. M. Kristiansen, J. H. Graversen, C. Jacobsen et al., “Identification of the haemoglobin scavenger receptor,” Nature, vol. 409, no. 6817, pp. 198–201, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Asleh, S. Marsh, M. Shilkrut et al., “Genetically determined heterogeneity in hemoglobin scavenging and susceptibility to diabetic cardiovascular disease,” Circulation Research, vol. 92, no. 11, pp. 1193–1200, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Guetta, M. Strauss, N. S. Levy, L. Fahoum, and A. P. Levy, “Haptoglobin genotype modulates the balance of Th1/Th2 cytokines produced by macrophages exposed to free hemoglobin,” Atherosclerosis, vol. 191, no. 1, pp. 48–53, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Strauss and A. P. Levy, “Regulation of CD163 associated casein kinase II activity is haptoglobin genotype dependent,” Molecular and Cellular Biochemistry, vol. 317, no. 1-2, pp. 131–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. P. Levy, I. Hochberg, K. Jablonski et al., “Haptoglobin phenotype is an independent risk factor for cardiovascular disease in individuals with diabetes: the strong heart study,” Journal of the American College of Cardiology, vol. 40, no. 11, pp. 1984–1990, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Suleiman, D. Aronson, R. Asleh et al., “Haptoglobin polymorphism predicts 30-day mortality and heart failure in patients with diabetes and acute myocardial infarction,” Diabetes, vol. 54, no. 9, pp. 2802–2806, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. U. Milman, S. Blum, C. Shapira et al., “Vitamin E supplementation reduces cardiovascular events in a subgroup of middle-aged individuals with both type 2 diabetes mellitus and the haptoglobin 2-2 genotype: a prospective double-blinded clinical trial,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 2, pp. 341–347, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. L. E. Cahill, A. P. Levy, S. E. Chiuve et al., “Haptoglobin genotype is a consistent marker of coronary heart disease risk among individuals with elevated glycosylated hemoglobin,” Journal of the American College of Cardiology, vol. 61, no. 7, pp. 728–737, 2013. View at Google Scholar
  23. S. Kalet-Litman, P. R. Moreno, and A. P. Levy, “The haptoglobin 2-2 genotype is associated with increased redox active hemoglobin derived iron in the atherosclerotic plaque,” Atherosclerosis, vol. 209, no. 1, pp. 28–31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Nadra, J. C. Mason, P. Philippidis et al., “Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification?” Circulation Research, vol. 96, no. 12, pp. 1248–1256, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Kasvosve, Z. A. R. Gomo, I. T. Gangaidzo et al., “Reference range of serum haptoglobin is haptoglobin phenotype-dependent in blacks,” Clinica Chimica Acta, vol. 296, no. 1-2, pp. 163–170, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Melamed-Frank, O. Lache, B. I. Enav et al., “Structure-function analysis of the antioxidant properties of haptoglobin,” Blood, vol. 98, no. 13, pp. 3693–3698, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. V. V. Bamm, V. A. Tsemakhovich, M. Shaklai, and N. Shaklai, “Haptoglobin phenotypes differ in their ability to inhibit heme transfer from hemoglobin to LDL,” Biochemistry, vol. 43, no. 13, pp. 3899–3906, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Madsen, H. J. Møller, M. J. Nielsen et al., “Molecular characterization of the haptoglobin-hemoglobin receptor CD163: ligand binding properties of the scavenger receptor cysteine-rich domain region,” The Journal of Biological Chemistry, vol. 279, no. 49, pp. 51561–51567, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Bondeson, K. A. Browne, F. M. Brennan, B. M. J. Foxwell, and M. Feldmann, “Selective regulation of cytokine induction by adenoviral gene transfer, of IκBα into human macrophages: lipopolysaccharide-induced, but not zymosan-induced, proinflammatory cytokines are inhibited, but IL-10 is nuclear factor-κB independent,” Journal of Immunology, vol. 162, no. 5, pp. 2939–2945, 1999. View at Google Scholar · View at Scopus
  30. S. M. El Ghmati, E. M. Van Hoeyveld, J. A. G. Van Strijp, J. L. Ceuppens, and E. A. M. Stevens, “Identification of haptoglobin as an alternative ligand for CD11b/CD18,” Journal of Immunology, vol. 156, no. 7, pp. 2542–2552, 1996. View at Google Scholar · View at Scopus
  31. J. J. Boyle, H. A. Harrington, E. Piper et al., “Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype,” American Journal of Pathology, vol. 174, no. 3, pp. 1097–1108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Asleh and A. P. Levy, “In vivo and in vitro studies establishing haptoglobin as a major susceptibility gene for diabetic vascular disease,” Vascular Health and Risk Management, vol. 1, no. 1, pp. 19–28, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. S. K. Lim, H. Kim, S. K. Lim et al., “Increased susceptibility in Hp knockout mice during acute hemolysis,” Blood, vol. 92, no. 6, pp. 1870–1877, 1998. View at Google Scholar · View at Scopus
  34. R. P. Rother, L. Bell, P. Hillmen, and M. T. Gladwin, “The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease,” Journal of the American Medical Association, vol. 293, no. 13, pp. 1653–1662, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Asleh, F. M. Nakhoul, R. Miller-Lotan et al., “Poor lysosomal membrane integrity in proximal tubule cells of haptoglobin 2-2 genotype mice with diabetes mellitus,” Free Radical Biology & Medicine, vol. 53, no. 4, pp. 779–786, 2012. View at Google Scholar
  36. C. D. Reiter, X. Wang, J. E. Tanus-Santos et al., “Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease,” Nature Medicine, vol. 8, no. 12, pp. 1383–1389, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. M. B. Maniecki, H. Hasle, L. Friis-Hansen et al., “Impaired CD163-mediated hemoglobin-scavenging and severe toxic symptoms in patients treated with gemtuzumab ozogamicin,” Blood, vol. 112, no. 4, pp. 1510–1514, 2008. View at Publisher · View at Google Scholar · View at Scopus