Table of Contents
International Journal of Inorganic Chemistry
Volume 2011 (2011), Article ID 837091, 4 pages
http://dx.doi.org/10.1155/2011/837091
Research Article

Preparation and Characterization of Ag-Doped BaTiO3 Conductive Powders

Department of Chemistry, Harbin Institute of Technology, Harbin150001, China

Received 5 November 2011; Accepted 15 December 2011

Academic Editor: W. T. Wong

Copyright © 2011 Sue Hao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Wu, L. Jiao, J. Ni, Z. Zeng, and S. Liu, “Preparation of ultra fine copper-nickel bimetallic powders for conductive thick film,” Intermetallics, vol. 15, pp. 1316–1321, 2007. View at Google Scholar
  2. V. Deshpande, A. Kshirsagar, S. Rane et al., “Properties of lead-free conductive thick films of co-precipitated silver-palladium powders,” Materials Chemistry and Physics, vol. 93, no. 2-3, pp. 320–324, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Wu, “Preparation of ultra-fine copper powder and its lead-free conductive thick film,” Materials Letters, vol. 61, no. 16, pp. 3526–3530, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Jana, A. Salehi-Khojin, W. H. Zhong, H. Chen, X. Liu, and Q. Huo, “Effects of gold nanoparticles and lithium hexafluorophosphate on the electrical conductivity of PMMA,” Solid State Ionics, vol. 178, no. 19-20, pp. 1180–1186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Liu, S. Tian, H. Li, and R. Gao, “Market, research and development status of conduct-electrocity powder,” Hydrometallurgy of China, vol. 23, pp. 1–5, 2004. View at Google Scholar
  6. A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties and Applications, Chapman and Hall, London, UK, 1990.
  7. K. Yao and W. Zhu, “BaTiO3 glass-ceramic thin films for integrated high dielectric media,” Thin Solid Films, vol. 408, pp. 11–14, 2002. View at Google Scholar
  8. J. Wei, J. Guan, J. Shi, and R. Yuan, “The structure and electrorheological effect of PAn/BaTiO3 nanocomposite,” Chinese Journal of Chemical Physics, vol. 16, pp. 401–405, 2003. View at Google Scholar
  9. H. Nemoto and I. Oda, “Direct examinations of PTC action of single grain boundaries in semiconducting BaTiO3 ceramics,” Journal of the American Ceramic Society, vol. 63, no. 7-8, pp. 398–401, 1980. View at Google Scholar · View at Scopus
  10. S. Tangjuank and T. Tunkasiri, “Characterization and properties of Sb-doped BaTiO3 powders,” Applied Physics Letters, vol. 90, no. 7, Article ID 072908, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Preis and W. Sitte, “Electronic conductivity and chemical diffusion in n-conducting barium titanate ceramics at high temperatures,” Solid State Ionics, vol. 177, no. 35-36, pp. 3093–3098, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Jana and T. K. Kundu, “Microstructure and dielectric characteristics of Ni ion doped BaTiO3 nanoparticles,” Materials Letters, vol. 61, no. 7, pp. 1544–1548, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Zhao, Z. Chang, S. Wu, and W. Xiong, “Effect of Ag-doping on BaTiO3 based PTCR ceramics by once-through method in sol-gel process,” Electronic Components & Materials, vol. 22, pp. 24–26, 2003. View at Google Scholar
  14. S. Wu, Z. Chang, D. Li, and W. Xiong, “Influence of various rare-earth dopants on conductivities of BaTiO3 ceramics,” Journal of Functional Materials, vol. 28, no. 5, pp. 509–510, 1997. View at Google Scholar · View at Scopus
  15. S. E. Hao and Y. D. Wei, “Electric characteristics of Nd2O3 doped BaTiO3 ceramics,” Journal of Harbin Institute of Technology (New Series), vol. 10, no. 4, pp. 388–391, 2003. View at Google Scholar · View at Scopus
  16. S. E. Hao and Y. D. Wei, “Gas penetration of Sm into BaTiO3 ceramics and their electric characteristics,” Material Science and Technology, vol. 12, no. 3, pp. 258–264, 2004. View at Google Scholar · View at Scopus
  17. S. Hao, Y. Wei, and C. Kuang, “Effects of Gd2O3 doping on electric characteristics of BaTiO3 ceramics,” Fine Chemicals, vol. 19, pp. 717–719, 2002. View at Google Scholar
  18. S. Hao, L. Sun, X. Liu, and Y. Wei, “Effects of La on structure and electrical characteristics of BaTiO3 ceramics,” Journal of Functional Materials and Devices, vol. 10, pp. 408–412, 2004. View at Google Scholar
  19. P. Yu, B. Cui, and Q. Shi, “Preparation and characterization of BaTiO3 powders and ceramics by sol-gel process using oleic acid as surfactant,” Materials Science and Engineering A, vol. 473, no. 1-2, pp. 34–41, 2008. View at Publisher · View at Google Scholar