Table of Contents
International Journal of Inorganic Chemistry
Volume 2012, Article ID 372141, 9 pages
http://dx.doi.org/10.1155/2012/372141
Research Article

Synthesis, Characterization, and Antimicrobial and Antispermatogenic Activity of Bismuth(III) and Arsenic(III) Derivatives of Biologically Potent Nitrogen and Sulfur Donor Ligands

1Centre for Advanced Studies in Chemistry, University of Rajasthan, Jaipur 302004, India
2Department of Zoology, University of Rajasthan, Jaipur 302004, India

Received 7 November 2011; Revised 12 January 2012; Accepted 26 January 2012

Academic Editor: Hakan Arslan

Copyright © 2012 Latika Dawara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Kulkarni, P. G. Avaji, G. B. Bagihalli, S. A. Patil, and P. S. Badami, “Synthesis, spectral, electrochemical and biological studies of Co(II), Ni(II) and Cu(II) complexes with Schiff bases of 8-formyl-7-hydroxy-4-methyl coumarin,” Journal of Coordination Chemistry, vol. 62, no. 3, pp. 481–492, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Sharma, R. V. Singh, and N. Fahmi, “Palladium(II) and platinum(II) derivatives of benzothiazoline ligands: synthesis, characterization, antimicrobial and antispermatogenic activity,” Spectrochimica Acta Part A, vol. 78, no. 1, pp. 80–87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. T. S. Basu Baul, “Antimicrobial activity of organotin(IV) compounds,” Applied Organometallic Chemistry, vol. 22, pp. 195–204, 2008. View at Google Scholar
  4. M.-X. Li, J. Zhou, H. Zhao, C.-L. Chen, and J.-P. Wang, “Iron(III) complex of 2-acetylpyrazine thiosemicarbazone: synthesis, spectral characterization, structural studies and antitumoral activity,” Journal of Coordination Chemistry, vol. 62, no. 9, pp. 1423–1429, 2009. View at Publisher · View at Google Scholar
  5. D. Shanker, R. K. Sharma, J. Sharma, A. K. Rai, and Y. P. Singh, “Metal-induced rearrangement of benzothiazoline ring: synthesis and characterization of some new organoantimony(V) derivatives of N, O, and S atom containing Schiff base ligands,” Heteroatom Chemistry, vol. 18, no. 1, pp. 70–75, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Singh, D. P. Singh, M. Singh Barwa, P. Tyagi, and Y. Mirza, “Some bivalent metal complexes of Schiff bases containing N and S donor atoms,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 21, no. 6, pp. 749–755, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Yadav and R. V. Singh, “Ferrocenyl-substituted Schiff base complexes of boron: synthesis, structural, physico-chemical and biochemical aspects,” Spectrochimica Acta Part A, vol. 78, no. 1, pp. 298–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Akbar Ali, A. H. Mirza, C. W. Voo, A. L. Tan, and P. V. Bernhardt, “The preparation of zinc(II) and cadmium(II) complexes of the pentadentate N3S2 ligand formed from 2,6-diacetylpyridine and S-benzyldithiocarbazate (H2SNNNS) and the X-ray crystal structure of the novel dimeric [Zn2(SNNNS)2] complex,” Polyhedron, vol. 22, no. 27, pp. 3433–3438, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Sun, H. Li, I. Harvey, and P. J. Sadler, “Interactions of bismuth complexes with metallothionein(II),” Journal of Biological Chemistry, vol. 274, no. 41, pp. 29094–29101, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Karra, Y. P. Singh, and A. K. Rai, “Synthesis and structural elucidation of some new phenylarsenic(III) derivatives of N(-substituted) S-benzyl dithiocarbazates,” Phosphorus, Sulfur and Silicon and Related Elements, vol. 166, pp. 125–135, 2000. View at Google Scholar · View at Scopus
  11. A. I. Vogel, A Textbook of Quantitative Chemical Analysis, Pearson Education Ltd.: Thames Polytechnique, London, UK, 6th edition, 2006.
  12. L. Dawara and R. V. Singh, “Synthesis, spectroscopic characterization, antimicrobial, pesticidal and nematicidal activity of some nitrogen-oxygen and nitrogen-sulfur donor coumarins based ligands and their organotin(IV) complexes,” Applied Organometallic Chemistry, vol. 25, no. 9, pp. 643–652, 2011. View at Publisher · View at Google Scholar
  13. S. Gaur, N. Fahmi, and R. V. Singh, “Coordination behavior of unsymmetrical ligand complexes of diorganotin and diorganosilicon derived from Schiff bases,” Phosphorus, Sulfur and Silicon and the Related Elements, vol. 182, no. 4, pp. 853–862, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Shrivastava, N. Fahmi, and R. V. Singh, “Studies on chromium(III) complexes with active nitrogen, oxygen and sulfur donor ketimines synthesized under microwave conditions,” Journal of Sulfur Chemistry, vol. 31, no. 6, pp. 515–524, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Greenwood, R. Slack, and J. Peutherer, Medical Microbiology: A Guide to Microbial Infections: Pathogenesis, Immunity, Laboratory Diagnosis and Control, ELST Publishers, Edinburgh, UK, 15 edition, 1997.
  16. K. Shanker, R. Rohini, V. Ravinder, P. M. Reddy, and Y. P. Ho, “Ru(II) complexes of N4 and N2O2 macrocyclic Schiff base ligands: their antibacterial and antifungal studies,” Spectrochimica Acta Part A, vol. 73, no. 1, pp. 205–211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. P. M. Davidson and M. E. Parish, “Methods for testing the efficacy of food antimicrobials,” Food Technology, vol. 43, no. 1, pp. 148–155, 1989. View at Google Scholar
  18. C. H. Collins, “Antibiotics and antibacterial substances,” in Microbiological Methods, pp. 296–305, Butterworths, London, UK, 1964. View at Google Scholar
  19. B. Geeta, K. Shravankumar, P. M. Reddy et al., “Binuclear cobalt(II), nickel(II), copper(II) and palladium(II) complexes of a new Schiff-base as ligand: synthesis, structural characterization, and antibacterial activity,” Spectrochimica Acta Part A, vol. 77, no. 4, pp. 911–915, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Keshavan and H. Kempe Gowda, “Synthesis, spectral and fungicidal studies on dioxobridged binuclear niobium(V) and tantalum(V) complexes of N-alkylphenothiazines,” Turkish Journal of Chemistry, vol. 26, no. 2, pp. 237–243, 2002. View at Google Scholar · View at Scopus
  21. A. W. Varnes, R. B. Dodson, and E. L. Wehry, “Interactions of transition-metal ions with photoexcited states of flavins. Fluorescence quenching studies,” Journal of the American Chemical Society, vol. 94, no. 3, pp. 946–950, 1972. View at Google Scholar · View at Scopus
  22. S. C. Joshi, R. Mathur, and N. Gulati, “Testicular toxicity of chlorpyrifos (an organophosphate pesticide) in albino rat,” Toxicology and Industrial Health, vol. 23, no. 7, pp. 439–444, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. C. Joshi, B. Bansal, and N. D. Jasuja, “Evaluation of reproductive and developmental toxicity of cypermethrin in male albino rats,” Toxicological and Environmental Chemistry, vol. 93, no. 3, pp. 593–602, 2011. View at Publisher · View at Google Scholar
  24. B. Desta, “Ethiopian traditional herbal drugs—part III: anti-fertility activity of 70 medicinal plants,” Journal of Ethnopharmacology, vol. 44, no. 3, pp. 199–209, 1994. View at Publisher · View at Google Scholar · View at Scopus