International Journal of Inorganic Chemistry
Volume 2012, Article ID 751676, 8 pages
http://dx.doi.org/10.1155/2012/751676
Research Article
Manganese-Nanoparticles Substitutions on the Vanadium Sites of Bi-Sr-Vanadate Aurivillius Ceramics
1Materials Science Unit, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
2Materials Science Unit, Chemistry Department, Faculty of Science, Taif University, 888-Alhawyah-Taif, Saudi Arabia
3Ceramic Unit, Chemistry Department, National Research Center, Tahrir Street, Dokki, Egypt
Received 3 November 2011; Revised 18 January 2012; Accepted 24 January 2012
Academic Editor: Hakan Arslan
Copyright © 2012 Khaled M. Elsabawy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linked References
- J. F. Scott and C. A. Paz de Araujo, “Ferroelectric memories,” Science, vol. 246, pp. 1400–1405, 1989. View at Publisher · View at Google Scholar
- G. H. Haertling, “Ferroelectric thin films for electronic applications,” Journal of Vacuum Science & Technology A, vol. 9, no. 3, article 414, 7 pages, 1991. View at Publisher · View at Google Scholar
- J. J. Lee, C. L. Thio, and S. B. Desu, “Electrode contacts on ferroelectric Pb(ZrxTi1−x)O3 and SrBi2Ta2O9 thin films and their influence on fatigue properties,” Journal of Applied Physics, vol. 78, no. 8, article 5073, 6 pages, 1995. View at Publisher · View at Google Scholar
- C. A. Pazde Araujo, J. D. Cuchlaro, L. D. McMillan, M. C. Scott, and J. F. Scott, “Fatigue-free ferroelectric capacitors with platinum electrodes,” Nature, vol. 374, no. 6523, pp. 627–629, 1995. View at Google Scholar · View at Scopus
- V. Volov, E. Vasco, P. Duran-Martin, and C. Zaldo, “Preferential orientation of modified SrBi2Nb2O9 ferroelectric thin films prepared by pulsed laser deposition,” Applied Physics A, vol. 69, no. 7, pp. 833–836, 1999. View at Google Scholar
- J. R. Duclere, M. G. Viry, A. Pen-in et al., “Composition control of SBN thin films deposited by PLD on various substrates,” International Journal of Inorganic Chemistry, vol. 3, no. 8, pp. 1133–1135, 2001. View at Google Scholar
- A. Boulle, C. Legrand, R. Guinebretiere, J. P. Mercurio, and A. Dauger, “X-Ray diffraction line broadening by stacking faults in SrBi2Nb2O9/SrTiO3 epitaxial thin films,” Thin Solid Films, vol. 391, no. 1, pp. 42–46, 2001. View at Publisher · View at Google Scholar
- X. Du and I. W. Chen, “Ferroelectric thin films of bismuth-containing layered perovskites: part II, PbBi2Nb2O9,” Journal of the American Ceramic Society, vol. 81, no. 12, pp. 3260–3264, 1998. View at Publisher · View at Google Scholar
- X. H. Zhu, A. D. Li, D. Wu, T. Zhu, Z. G. Liu, and N. B. Ming, “High-resolution electron microscopy investigations on stacking faults in SrBi2Ta2O9 ferroelectric thin films,” Applied Physics Letters, vol. 78, no. 7, pp. 973–976, 2001. View at Publisher · View at Google Scholar
- P. Duran-martin, Substitutions effects on different sites of aurrivillius structure, Ph.D. thesis, University of Autonoma de Madrid, Madrid, Spain, 1997.
- P. Duran-Martin, A. Castro, P. Ramos, P. Millan, and B. Jimenez, “Ferroelectric anisotropy in layered compound type of Bi1.75Te0.25Sr0.75Na0.25Nb2O9,” Boletines Sociedad de Cerámica y Vidrio, vol. 37, pp. 143–147, 1998. View at Google Scholar
- K. Watanabe, M. Tanaka, E. Sumitomo, K. Katori, H. Yagi, and J. F. Scott, “Spin-coated ferroelectric SrBi2Nb2O9 thin films,” Applied Physics Letters, vol. 73, no. 1, pp. 126–129, 1998. View at Publisher · View at Google Scholar
- J. H. Yi, P. Thomas, M. Manier, J. P. Mercurio, I. Jauberteau, and R. Guinebretiere, “SrBi2Nb2O9 ferroelectric powders and thin films prepared by Sol-Gel,” Journal of Sol-Gel Science and Technology, vol. 13, no. 1–3, pp. 885–888, 1998. View at Publisher · View at Google Scholar
- M. Mitsuya, K. Ishikawa, N. Nukaga, and H. Funakubo, “Preparation and characterization of SrBi2(Ta1-xNbx)2O9 thin films by metalorganic chemical vapor deposition from two organometallic source bottles,” Japanese Journal of Applied Physics, vol. 39, pp. L620–L622, 2000. View at Publisher · View at Google Scholar
- Y. Wu and G. Cao, “Ferroelectric and dielectric properties of strontium bismuth niobate vanadates,” Journal of Materials Research, vol. 15, no. 7, pp. 1583–1590, 2000. View at Publisher · View at Google Scholar
- Y. Wu and G. Z. Cao, “Enhanced ferroelectric properties and lowered processing temperatures of strontium bismuth niobates with vanadium doping,” Applied Physics Letters, vol. 75, no. 17, article 2650, 3 pages, 1999. View at Publisher · View at Google Scholar
- H. Gu, J. M. Xue, and J. Wang, “Significant dielectric enhancement in 0.3BiFeO3–0.7SrBi2Nb2O9,” Applied Physics Letters, vol. 79, no. 13, article 2061, 3 pages, 2001. View at Publisher · View at Google Scholar
- Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, and F. Izumi, “Crystal structures and ferroelectric properties of SrBi2Ta2O9 and Sr0.8Bi2.2Ta2O9,” Applied Physics Letters, vol. 74, no. 13, article 1904, 3 pages, 1999. View at Publisher · View at Google Scholar
- J. K. Lee, B. Park, K. S. Hong et al., “Effect of excess Bi2O3 on the ferroelectric properties of SrBi2Ta2O9 ceramics,” Journal of Applied Physics, vol. 88, no. 5, article 2825, 5 pages, 2000. View at Google Scholar
- Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, and F. Izumi, “Crystal structure and ferroelectric properties of ABi2Ta2O9(A=Ca, Sr, and Ba),” Physical Review B, vol. 61, no. 10, pp. 6559–6564, 2000. View at Publisher · View at Google Scholar
- I. Coondoo, A. K. Jha, and S. K. Agarwal, “Structural, dielectric and electrical studies in tungsten doped SrBi2Ta2O9 ferroelectric ceramics,” Ceramics International, vol. 33, no. 1, pp. 41–47, 2007. View at Publisher · View at Google Scholar
- R. D. Shannon and C. T. Prewitt, “Effective ionic radii in oxides and fluorides,” Acta Crystallographica, vol. 25, pp. 925–946, 1969. View at Publisher · View at Google Scholar
- H. Taguchi, A. Shimizu, M. Nagao, and H. Kido, “Synthesis and characterization of four-layered hexagonal (Sr1-xBax)MnO3 (0.0 ≤ x ≤ 0.5),” Journal of the Ceramic Society of Japan, vol. 115, pp. 77–80, 2007. View at Google Scholar
- T. Matsuoka, Y. Matsuo, H. Sasaki, and S. Hayagawa, “PTCR behavior of BaTiO3 with Nb2O5 and MnO2Additives,” Journal of the American Ceramic Society, vol. 55, no. 2, p. 108, 1972. View at Publisher · View at Google Scholar
- H. Ueoka, “The doping effects of transition elements on the PTC anomaly of semiconductive ferroelectric ceramics,” Ferroelectrics, vol. 7, no. 1, pp. 351–353, 1974. View at Publisher · View at Google Scholar
- J. H. Choi, S. I. Lee, H. J. Sung, B.J. Park, and S. M. Jhon, “Comment on “preparation and electrorheological property of rare earth modified amorphous BaxSr1-xTiO3 gel electrorheological fluid”,” Journal of Colloid and Interface Science, vol. 295, no. 1, pp. 291–293, 2006. View at Publisher · View at Google Scholar
- S. J. Liu and N. G. Fan, “Thermal stability and influence of 3d-metals on aurrivilius phase,” Chinese Journal of Chemical Physics, p. 367, 2006. View at Google Scholar
- E. Masiukaitė, J. Banys, R. Sobiestianskas, T. Ramoska, V. A. Khomchenko, and D. A. Kiselev, “Conductivity investigations of Aurivillius-type Bi2.5Gd1.5Ti3O12 ceramics,” Solid State Ionics, vol. 188, no. 1, pp. 50–52, 2011. View at Publisher · View at Google Scholar · View at Scopus
- B. Zulhadjri, B. Prijamboedi, A. A. Nugroho et al., “Aurivillius phases of PbBi4Ti4O15 doped with Mn3+ synthesized by molten salt technique: structure, dielectric, and magnetic properties,” Journal of Solid State Chemistry, vol. 184, no. 5, pp. 1318–1323, 2011. View at Publisher · View at Google Scholar · View at Scopus
- A. Chakrabarti and J. Bera, “Structure and ferroelectric properties of BaBi3.8M0.2(Ti3.8Nb0.2)O15 (M=Mg, Ca, Sr and Ba) ceramics,” Physica B, vol. 406, no. 14, pp. 2891–2897, 2011. View at Publisher · View at Google Scholar · View at Scopus
- M. Mazurek, E. Jartych, A. Lisińska-Czekaj, D. Czekaj, and D. Oleszak, “Structure and hyperfine interactions of Bi9Ti3Fe5O27 multiferroic ceramic prepared by sintering and mechanical alloying methods,” Journal of Non-Crystalline Solids, vol. 356, no. 37–40, pp. 1994–1997, 2010. View at Publisher · View at Google Scholar · View at Scopus
- N. L. Amsei, A. Z. Simoes, A. A. Cavalheiro, S. M. Zanetti, E. Longo, and J. A. Varela, “Structural and microstructural characterization of SrBi2(Ta0.5Nb0.48W0.02)2O9 powders,” Journal of Alloys and Compounds, vol. 454, no. 1-2, pp. 61–65, 2008. View at Google Scholar
- I. Onyszkieuicz, P. Czarnecki, R. Mienas, and S. Robaszkiewiez, “Spectroscopic studies of the high-Tc superconducting cuprate perovskites,” Physica, vol. 147, no. 2-3, pp. 166–174, 1988. View at Google Scholar
- T. Hidaka, “Electronic instability of the Γ15 phonon in BaTiO3,” Physical Review B, vol. 20, pp. 2769–2773, 1979. View at Publisher · View at Google Scholar
- A. Simpson and E. Robert, Introductory Electronics for Scientists & Engineers, Allyn and Bacon, 2nd edition, 1987.
- N. Sharma, C. D. Ling, G. E. Wrighter, P. Y. Chen, B. J. Kennedy, and P. L. Lee, “Three-layer Aurivillius phases containing magnetic transition metal cations: Bi2-xSr2+x(Nb,Ta)2+xM1-xO12, , Ir4+, Mn4+, ,” Journal of Solid State Chemistry, vol. 180, no. 1, pp. 370–376, 2007. View at Publisher · View at Google Scholar · View at Scopus
- S. R. Kokare, S. A. Pawar, N. T. Padal, and P.B. Joshi, “Studies on compensating valency substituted BaTi(1-x)Mnx/2Nbx/2O3 ceramics,” Bulletin of Material Science, vol. 42, no. 2, pp. 243–248, 2001. View at Google Scholar
- N. Syam and K. B. Varma, “Nanocrystallization of SrBi2Nb2O9 from glasses in the system Li2B4O7SrOBi2O3Nb2O5,” Materials Science and Engineering B, vol. 90, no. 3, pp. 246–253, 2002. View at Google Scholar