Table of Contents
International Journal of Inorganic Chemistry
Volume 2012 (2012), Article ID 791219, 11 pages
http://dx.doi.org/10.1155/2012/791219
Research Article

Polydentate Schiff Base Ligands and Their La(III) Complexes: Synthesis, Characterization, Antibacterial, Thermal, and Electrochemical Properties

1Chemistry Department, Osmaniye Korkut Ata University, 80100 Osmaniye, Turkey
2Chemistry Department, K.Maras Sütcü Imam University, 46100 K.Maras, Turkey
3Biology Department, K.Maras Sütcü Imam University, 46100 K.Maras, Turkey

Received 3 November 2011; Revised 27 December 2011; Accepted 14 January 2012

Academic Editor: Maurizio Peruzzini

Copyright © 2012 Ali E. Şabik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Tümer, “Polydentate schiff-base ligands and their Cd(II) and Cu(II) metal complexes: synthesis, characterization, biological activity and electrochemical properties,” Journal of Coordination Chemistry, vol. 60, no. 19, pp. 2051–2065, 2007. View at Publisher · View at Google Scholar
  2. M. Tümer, H. Köksal, and S. Serin, “Synthesis, characterization and thermal investigation of some metal complexes derived from new schiff base ligands,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 28, no. 8, pp. 1393–1404, 1998. View at Google Scholar · View at Scopus
  3. M. Tümer, H. Köksal, M. K. Şener, and S. Serin, “Antimicrobial activity studies of the binuclear metal complexes derived from tridentate Schiff base ligands,” Transition Metal Chemistry, vol. 24, no. 4, pp. 414–420, 1999. View at Publisher · View at Google Scholar
  4. J. W. Pyrz, A. I. Roe, L. J. Stern, and J. R. Que, “Model studies of iron-tyrosinate proteins,” Journal of the American Chemical Society, vol. 107, no. 3, pp. 614–620, 1985. View at Google Scholar
  5. M. Tümer, B. Erdoğan, H. Köksal, S. Serin, and M. Y. Nutku, “Preparation, spectroscopic characterisation and thermal analyses studies of the Cu(II), Pd(II) and Vo(IV) complexes of some Schiff base ligands,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 28, no. 4, pp. 529–542, 1998. View at Publisher · View at Google Scholar
  6. J. Chakraborty and R. N. Patel, “Copper-, cobalt- and zinc(II) complexes with monofunctional bidentate Schiff base and monodentate neutral ligands,” Journal of the Indian Chemical Society, vol. 73, no. 4-5, pp. 191–193, 1996. View at Google Scholar · View at Scopus
  7. J. E. Huneey, E. A. Keitar, and R. L. Keiter, “Inorganic Chemistry: Principles of Structure and Reactivity,” pp. 57–85, Rearsen Education, Singapore, 2002. View at Google Scholar
  8. D. K. Koppikar, P. V. Sivapulliah, L. Ramakrishnan, and S. Soundararjan, “Complexes of the lanthanides with neutral oxygen donor ligands,” Structure and Bonding, vol. 34, pp. 135–213, 1978. View at Google Scholar
  9. C. Mealli and E. C. Lingafelter, “The X-ray crystal structure of a low-spin pseudo-octahedral complex of iron(II),” Journal of the Chemical Society D, no. 14, p. 885, 1970. View at Publisher · View at Google Scholar · View at Scopus
  10. M. J. Upadhyay, P. K. Bhattacharya, P. A. Ganeshpure, and S. Satish, “Epoxidation of alkenes with iodosylbenzene using mono-and binuclear Ru(III)-Schiff base complex catalysts,” Journal of Molecular Catalysis, vol. 73, no. 3, pp. 277–285, 1992. View at Google Scholar · View at Scopus
  11. T. Mukaiyama and T. Yamada, “Recent advances in aerobic oxygenation,” Bulletin of the Chemical Society of Japan, vol. 68, no. 1, pp. 17–35, 1995. View at Google Scholar
  12. D. Riley, M. Stern, J. Ebner, D. H. R. Barton, A. E. Martell, and D. T. Sawyer, The Activation of Dioxygen and Homogeneous Catalytic Oxidation, Plenum Press, New York, NY, USA, 1993.
  13. R. A. Sheldon and J. K. Kochi, Metal Catalysed Oxidations of Organic Compounds, Academic Press, New York, NY, USA, 1981.
  14. B. Meunier, “Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage,” Chemical Reviews, vol. 92, no. 6, pp. 1411–1456, 1992. View at Google Scholar · View at Scopus
  15. M. J. Carter, D. P. Rillema, and F. Basolo, “Oxygen carrier and redox properties of some neutral cobalt chelates. Axial and in-plane ligand effects,” Journal of the American Chemical Society, vol. 96, no. 2, pp. 392–400, 1974. View at Google Scholar · View at Scopus
  16. D. F. Averill and R. F. Broman, “Substituted salen and baen tetradentate Schiff-base ligands. Synthesis, characterization, and electrochemistry of cobalt(III) complexes,” Inorganic Chemistry, vol. 17, no. 12, pp. 3389–3394, 1978. View at Google Scholar · View at Scopus
  17. G. S. Patterson and R. H. Holm, “Structural and electronic effects on the polarographic half wave potentials of copper (II) chelate complexes,” Bioinorganic Chemistry, vol. 4, no. 3, pp. 257–275, 1975. View at Publisher · View at Google Scholar · View at Scopus
  18. C. H. Collins, P. M. Lyne, and J. M. Grange, Microbiological Methods, Butterworths, Oxford, UK, 6th edition, 1989.
  19. M. Dolaz, M. Tümer, and M. Diǧrak, “Synthesis, characterization and stability constants of polynuclear metal complexes,” Transition Metal Chemistry, vol. 29, no. 5, pp. 528–536, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. E. C. Alyea, A. Malek, and A. E. Vougioukas, “Lanthanide complexes of potentially heptadentate Schiff base ligands,” Canadian Journal of Chemistry, vol. 60, no. 5, pp. 667–372, 1982. View at Google Scholar
  21. A. B. P. Lever, E. Mantiovani, and B. S. Ramaswamy, “Infrared combination frequencies in coordination complexes containing Nitrate groups in various coordination environments,” Canadian Journal of Chemistry, vol. 49, no. 11, pp. 1957–1964, 1971. View at Google Scholar
  22. N. K. Dutt and S. Rahut, “Chemistry of lanthanons—XXV. The formation constants of the ethyl thioacetoacetato complexes of rare earths,” Journal of Inorganic and Nuclear Chemistry, vol. 32, pp. 2105–2112, 1970. View at Google Scholar
  23. K. Arora, M. Sharma, and K. P. Sharma, “Studies of some lanthanide(III) nitrate complexes of schiff base ligands,” E-Journal of Chemistry, vol. 6, pp. 201–210, 2009. View at Google Scholar
  24. K. I. Kugel and D. I. Khomskii, “Crystal structure and magnetic properties of substances with orbital degeneracy,” Soviet Physics - JETP, vol. 37, no. 4, pp. 725–730, 1973. View at Google Scholar
  25. S. B. Pirkers, A. V. Lapitskaya, T. G. Vaistub, T. A. Baranova, A. K. Chulkevich, and A. M. Fainleib, “Studies of some lanthanide(III) nitrate complexes of schiff base ligands,” Zhurnal Neorganicheskoi Khimii, vol. 29, pp. 369–379, 1984. View at Google Scholar
  26. S. P. Tondon and P. C. Mehta, “Bonding inferred from study of nephelauxetic effect in neodymium complexes,” Journal of Chemical Physics, vol. 52, pp. 4314–4325, 1970. View at Google Scholar
  27. J. H. Van Vleck and A. Frank, “The effect of second order Zeeman terms on magnetic susceptibilities in the rare earth and iron groups,” Physical Review, vol. 34, no. 11, pp. 1494–1496, 1929. View at Publisher · View at Google Scholar · View at Scopus
  28. W. J. Geary, “The use of conductivity measurements in organic solvents for the characterisation of coordination compounds,” Coordination Chemistry Reviews, vol. 7, no. 1, pp. 81–122, 1971. View at Google Scholar · View at Scopus
  29. A. T. Çolak, F. Çolak, O. Z. Yesilel, D. Akduman, F. Yilmaz, and M. Tümer, “Supramolecular cobalt(II)-pyridine-2,5-dicarboxylate complexes with isonicotinamide, 2-amino-3-methylpyridine and 2-amino-6-methylpyridine: ayntheses, crystal structures, spectroscopic, thermal and antimicrobial activity studies,” Inorganica Chimica Acta, vol. 363, no. 10, pp. 2149–2162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. B. K. Ghosh and A. Chakravorty, “Electrochemical studies of ruthenium compounds part I. Ligand oxidation levels,” Coordination Chemistry Reviews, vol. 95, no. 2, pp. 239–294, 1989. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Pal and S. Pal, “Ruthenium(II) complexes containing RuN4O2 spheres assembled via pyridine-imine-amide coordination. Syntheses, structures, properties and protonation behaviour of coordinated amide,” Journal of the Chemical Society, Dalton Transactions, no. 9, pp. 2102–2108, 2002. View at Google Scholar · View at Scopus
  32. D. T. Sawyer, A. Sobkowiak, and J. L. Roberts Jr., Electrochemistry for Chemists, John Wiley & Sons, New York, NY, USA, 2nd edition, 1995.