Table of Contents
International Journal of Inorganic Chemistry
Volume 2013 (2013), Article ID 212435, 7 pages
http://dx.doi.org/10.1155/2013/212435
Research Article

Synthesis, Characterization, and Photophysical Studies of Some Novel Ruthenium(II) Polypyridine Complexes Derived from Benzothiazolyl hydrazones

1Organic Chemistry Research Laboratory, Yeshwant Mahavidyalaya, Nanded, Maharashtra 431602, India
2School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra 431606, India
3P.G. Department of Chemistry, Sir Sayyed College of Arts, Commerce & Science, Aurangabad, Maharashtra 431001, India

Received 30 April 2013; Revised 19 July 2013; Accepted 3 August 2013

Academic Editor: Wolfgang Linert

Copyright © 2013 Shaikh Khaled et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Desjardins, P. A. Glenn, and J. Robert, “Tetrakis (pyridine) ruthenium trans complexes of Phenyl cyanamide ligands:  crystallography, electronic absorption spectroscopy, and cyclic voltammetry,” Journal of Inorganic Chemistry, vol. 38, no. 25, pp. 5901–5905, 1999. View at Google Scholar
  2. D. Hesek, Y. Inoue, S. R. L. Everitt, H. Ishida, M. Kunieda, and M. G. B. Drew, “Diastereoselective preparation and characterization of ruthenium bis(bipyridine) sulfoxide complexes,” Inorganic Chemistry, vol. 39, no. 2, pp. 317–324, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Suzuki, T. Kuchiyama, S. Kishi, S. Kaizaki, H. D. Takagi, and M. Kato, “Ruthenium(II) complexes containing 8-(dimethylphosphino)quinoline (Me2Pqn): preparation, crystal structures, and electrochemical and spectroscopic properties of [Ru(bpy or phen)3-n(Me2Pqn)n] (PF6)2 (bpy = 2,2′-bipyridine; phen = 1,10-phenanthroline; n = 1, 2, or 3),” Inorganic Chemistry, vol. 42, no. 3, pp. 785–795, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. J.-P. Sauvage, J.-P. Collin, J.-C. Chambron et al., “Ruthenium(II) and osmium(II) bis(terpyridine) complexes in covalently-linked multicomponent systems: synthesis, electrochemical behavior, absorption spectra, and photochemical and photophysical properties,” Chemical Reviews, vol. 94, no. 4, pp. 993–1019, 1994. View at Google Scholar · View at Scopus
  5. A. O. Adeloye, “Synthesis, photophysical and electrochemical properties of a mixed bipyridyl-phenanthrolyl ligand Ru(II) heteroleptic complex having trans-2-Methyl-2-butenoic acid functionalities,” Molecules, vol. 16, no. 10, pp. 8353–8367, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Galletta, F. Puntoriero, S. Campagna et al., “Absorption spectra, photophysical properties, and redox behavior of ruthenium(II) polypyridine complexes containing accessory dipyrromethene-BF2 chromophores,” Journal of Physical Chemistry A, vol. 110, no. 13, pp. 4348–4358, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, and A. von Zelewsky, “Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence,” Coordination Chemistry Reviews, vol. 84, pp. 85–277, 1988. View at Google Scholar · View at Scopus
  8. S. P. Foxon, C. Green, M. G. Walker et al., “Synthesis, characterization, and DNA binding properties of ruthenium(II) complexes containing the redox active ligand benzo[i]dipyrido[3,2- a: 2′,3′-c]phenazine-11,16-quinone,” Inorganic Chemistry, vol. 51, no. 1, pp. 463–471, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. M. S. Deshpande, A. A. Kumbhar, A. S. Kumbhar et al., “Ruthenium(II) complexes of bipyridine-glycoluril and their interactions with DNA,” Bioconjugate Chemistry, vol. 20, no. 3, pp. 447–459, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. L. N. Suvarapu, Y. K. Seo, S. O. Baek, and V. R. Ammireddy, “Review on analytical and biological applications of hydrazones and their metal complexes,” E-Journal of Chemistry, vol. 9, no. 3, pp. 1288–1304, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Mitu, M. Ilis, N. Raman, M. Imran, and S. Ravichandran, “Transition metal complexes of isonicotinoyl-hydrazone-4- diphenylaminobenzaldehyde: synthesis, characterization and antimicrobial studies,” E-Journal of Chemistry, vol. 9, no. 1, pp. 365–372, 2012. View at Google Scholar · View at Scopus
  12. R. K. Mohapatra, U. K. Mishra, S. K. Mishra, A. Mahapatra, and D. C. Dash, “Synthesis and characterization of transition metal complexes with benzimidazolyl-2-hydrazones of o-anisaldehyde and furfural,” Journal of the Korean Chemical Society, vol. 55, no. 6, pp. 926–931, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. R. K. Mohapatra, M. P. Dash, S. B. Joshi et al., “Synthesis and spectral characterization of transition metal complexes with benzothiazolyl-2-hydrazones of salicylidene acetone and salicylidene acetophenone,” Acta Chimica & Pharmaceutica Indica, vol. 2, p. 156, 2012. View at Google Scholar
  14. C. Anitha, S. Sumathi, P. Tharmaraj et al., “Synthesis, characterization, and biological activity of some transition metal complexes derived from novel hydrazone azo schiff base ligand,” International Journal of Inorganic Chemistry, vol. 2011, Article ID 493942, 8 pages, 2011. View at Publisher · View at Google Scholar
  15. M. Cǎlinescu, E. Ion, and A.-M. Stadler, “Studies on nickel(II) complex compounds with 2-benzothiazolyl hydrazones,” Revue Roumaine de Chimie, vol. 53, no. 10, pp. 903–909, 2008. View at Google Scholar · View at Scopus
  16. B. P. Sullivan, D. J. Salmon, and T. J. Meyer, “Mixed phosphine 2,2′-bipyridine complexes of ruthenium,” Inorganic Chemistry, vol. 17, no. 12, pp. 3334–3341, 1978. View at Google Scholar · View at Scopus
  17. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, New York, NY, USA, 4th edition, 1986.
  18. M. R. Maurya, N. Agarwal, and S. Khurana, “Synthesis and characterization of metal complexes of methylene bridged hexadentate tetraanionic ligands,” Indian Journal of Chemistry A, vol. 39, no. 10, pp. 1093–1097, 2000. View at Google Scholar · View at Scopus
  19. Z. H. Peng, X. M. Ren, C. J. Fang, B. G. Zhang, and J. T. Suen, “Synthesis and spectroscopic characterization of transition metal complexes of maleionitriledithiolene and 1,10-phenanthroline,” Chinese Chemical Letters, vol. 10, no. 3, pp. 263–266, 1999. View at Google Scholar · View at Scopus
  20. N. Raman and S. Sobha, “Synthesis, characterization, DNA interaction and antimicrobial screening of isatin-based polypyridyl mixed-ligand Cu(II) and Zn(II) complexes,” Journal of the Serbian Chemical Society, vol. 75, no. 6, pp. 773–788, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Prajapati, V. K. Yadav, S. K. Dubey, B. Durham, and L. Mishra, “Reactivity of metal (ZnII, RuII)-2,2′-bipyridyl with some bifunctional ligands,” Indian Journal of Chemistry A, vol. 47, no. 12, pp. 1780–1786, 2008. View at Google Scholar · View at Scopus
  22. M. M. H. Khalil, E. H. Ismail, G. G. Mohamed, E. M. Zayed, and A. Badr, “Synthesis and characterization of a novel schiff base metal complexes and their application in determination of iron in different types of natural water,” Open Journal of Inorganic Chemistry, vol. 2, no. 2, pp. 13–21, 2012. View at Google Scholar
  23. M. S. Nair, D. Arish, and R. S. Joseyphus, “Synthesis, characterization, antifungal, antibacterial and DNA cleavage studies of some heterocyclic Schiff base metal complexes,” Journal of Saudi Chemical Society, vol. 16, no. 1, pp. 83–88, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. H. N. Aliyu and U. Sani, “Synthesis, characterization and biological activity of manganese(II), iron(II), cobalt(II), nickel(II) and copper(II) schiff base complexes against multidrug resistant bacterial and fungal pathogens,” International Research Journal of Pharmacy and Pharmacology, vol. 2, p. 40, 2012. View at Google Scholar
  25. W. H. Hegazy and M. Gaafar, “Synthesis, characterization and antibacterial activities of new Pd(II) and Pt(IV) complexes of some unsymmetrical tetradentate schiff bases,” American Chemical Science Journal, vol. 2, no. 3, p. 86, 2012. View at Google Scholar
  26. R. M. Silverstine, G. C. Bausler, T. C. Morill et al., Spectroscopic Identification of Organic Compounds, John Wiley & Sons, New York, NY, USA, 5th edition, 1991.
  27. T. Sofia, B. Mahdi, N. Hossein et al., “Synthesis, characterization, and biological studies of new ruthenium polypyridine complexes containing noninnocent ligand,” ISRN Inorganic Chemistry, vol. 2013, Article ID 623962, 6 pages, 2013. View at Publisher · View at Google Scholar
  28. M. S. Deshpande and A. S. Kumbhar, “Mixed-ligand complexes of ruthenium(II) incorporating a diazo ligand: synthesis, characterization and DNA binding,” Journal of Chemical Sciences, vol. 117, no. 2, pp. 153–159, 2005. View at Google Scholar · View at Scopus
  29. J. Karolin, L. B.-A. Johansson, L. Strandberg, and T. Ny, “Fluorescence and absorption spectroscopic properties of dipyrrometheneboron difluoride (BODIPY) derivatives in liquids, lipid membranes, and proteins,” Journal of the American Chemical Society, vol. 116, no. 17, pp. 7801–7806, 1994. View at Google Scholar · View at Scopus
  30. D. Arish and M. S. Nair, “Synthesis, characterization and biological studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with pyrral-l-histidinate,” Arabian Journal of Chemistry, vol. 5, no. 2, pp. 179–186, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. K. K.-W. Lo, W.-K. Hui, C.-K. Chung, K. H.-K. Tsang, T. K.-M. Lee, and D. C.-M. Ng, “Luminescent transition metal polypyridine biotin complexes,” Journal of the Chinese Chemical Society, vol. 53, no. 1, pp. 53–65, 2006. View at Google Scholar · View at Scopus
  32. M. Montalti, A. Credi, L. Prodi et al., Handbook of Photochemistry, CRC Press, Boca Raton, Fla, USA, 3rd edition, 2006.
  33. M. Klessinger and J. Michl, Excited States and Photochemistry of Organic Molecules, Wiley-VCH, New York, NY, USA, 1995.
  34. G. A. Crosby, “Spectroscopic investigations of excited states of transition-metal complexes,” Accounts of Chemical Research, vol. 8, no. 7, pp. 231–238, 1975. View at Google Scholar · View at Scopus
  35. T. J. Meyer, “Chemical approaches to artificial photosynthesis,” Accounts of Chemical Research, vol. 22, no. 5, pp. 163–170, 1989. View at Google Scholar · View at Scopus
  36. K. F. Freed and J. Jortner, “Multiphonon processes in the nonradiative decay of large molecules,” The Journal of Chemical Physics, vol. 52, no. 12, pp. 6272–6291, 1970. View at Google Scholar · View at Scopus
  37. L.-N. Ji, X.-H. Zou, and J.-G. Liu, “Shape- and enantioselective interaction of Ru(II)/Co(III) polypyridyl complexes with DNA,” Coordination Chemistry Reviews, vol. 216-217, pp. 513–536, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. M. M. A. Sekkina and M. G. A. El-Azm, “Thermochemical analyses of solid isonicotinic hydrazide transition metal complexes,” Thermochimica Acta, vol. 79, pp. 47–53, 1984. View at Google Scholar · View at Scopus
  39. J. Y. Lu, M. A. Lawandy, and J. Li, “A new type of two-dimensional metal coordination systems: Hydrothermal synthesis and properties of the first oxalate-BPY mixed-ligand framework∞2[M(ox)(bpy)] (M = Fe(II), Co(II), Ni(II), Zn(II); ox = (C2O4)2; bpy = 4,4′-bipyridine),” Inorganic Chemistry, vol. 38, no. 11, pp. 2695–2704, 1999. View at Google Scholar · View at Scopus