Table of Contents
International Journal of Inorganic Chemistry
Volume 2013 (2013), Article ID 524179, 6 pages
http://dx.doi.org/10.1155/2013/524179
Research Article

Syntheses and Characterization of the Coordination Compounds of N-(2-hydroxymethylphenyl)-C-(3′-carboxy-2′-hydroxyphenyl)thiazolidin-4-one

1Department of Chemistry, National Institute of Technology, Haryana, Kurukshetra 136119, India
2Department of Chemistry, Haryana College of Technology & Management, Haryana, Kaithal 136027, India
3Department of Chemistry, Shri Krishan Institute of Engineering & Technology, Haryana, Kurukshetra 136118, India

Received 26 December 2012; Accepted 7 February 2013

Academic Editor: Hakan Arslan

Copyright © 2013 Dinesh Kumar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Abhinit, M. Ghodke, and N. A. Pratima, “Exploring potential of 4-thiazolidinone: a brief review,” International Journal of Pharmacy and Pharmaceutical Sciences, no. 1, pp. 47–64, 2009. View at Google Scholar · View at Scopus
  2. D. A. Horton, G. T. Bourne, and M. L. Smyth, “The combinatorial synthesis of bicyclic privileged structures or privileged substructures,” Chemical Reviews, vol. 103, no. 3, pp. 893–930, 2003. View at Publisher · View at Google Scholar
  3. N. J. Hrib, J. G. Jurcak, and J. G. Bregna, “3[4-[1-(6-Fluorobenzo[b]thiophen-3-yl)-4-piperazinyl]butyl]-2,5,5-trimethyl-4-thiazolidinone: a new atypical antipsychotic agent for the treatment of schizophrenia,” Journal of Medicinal Chemistry, vol. 35, no. 14, pp. 2712–2715, 1992. View at Publisher · View at Google Scholar
  4. A. Solanki and K. Kishore, “Synthesis and antitubercular activity of some 4-thiazolidinones,” Asian Journal of Chemistry, vol. 6, no. 3, p. 177, 1994. View at Google Scholar
  5. B. P. Choudhari and V. V. Mulwad, “Synthesis of 1-(6-methylbenzofuran-2-yl)-3-aryl/[4-(β-substitutedethoxy)phenyl]propenones as marked anti-microbial agents,” Indian Journal of Chemistry, vol. 44, p. 1074, 2005. View at Google Scholar
  6. N. J. Gaikwad and S. B. Agrawal, “Substituted 4-thiazolidinones as anticonvulsants VII,” Indian Drugs, vol. 34, no. 9, pp. 542–543, 1997. View at Google Scholar · View at Scopus
  7. P. V. Patel and K. R. Desai, “Synthesis and anti-bacterial activity of new isoxazolines derivatives of 3,5-diaryl isoxazolines,” Oriental Journal of Chemistry, vol. 18, no. 3, p. 311, 2002. View at Google Scholar
  8. N. C. Desai, B. R. Parekh, and K. A. Thaker, “Preparation of some important medicinal compounds. Thiosemicarbazones, thiadiazolines, 4-thiazolidinones and 5-arylidine derivatives as antibacterial and tuberculostatic agents,” Journal of the Indian Chemical Society, vol. 64, no. 8, pp. 491–493, 1987. View at Google Scholar · View at Scopus
  9. T. Kato, T. Ozaki, K. Tamura, Y. Suzuki, M. Akima, and N. Ohi, “Novel calcium antagonists with both calcium overload inhibition and antioxidant activity. 2. Structure-activity relationships of thiazolidinone derivatives,” Journal of Medicinal Chemistry, vol. 42, no. 16, pp. 3134–3146, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. V. S. Ingle, A. R. Sawale, R. D. Ingle, and R. A. Mane, “Synthesis of new 4-thiazolidinones bearing potentially active heteryl moities,” Indian Journal of Chemistry B, vol. 40, no. 2, pp. 124–128, 2001. View at Google Scholar · View at Scopus
  11. S. B. Junne, S. S. Wadje, M. M. V. Baig, and Y. B. Vibhute, “Novel heterocyclic schiff bases, 4-thiazolidinones and 2-azetidinones possessing antibacterial and antifungal activity,” International Journal of Chemical Sciences, vol. 5, p. 2093, 2007. View at Google Scholar
  12. D. Kumar and A. Kumar, “Syntheses, magnetic and spectral studies on the coordination compounds of the polystyrene anchored thiazolidin-4-one,” E-Journal of Chemistry, vol. 9, no. 4, pp. 2532–2539, 2012. View at Google Scholar
  13. A. M. Rehab Al-Hasani, M. M. Sinan Al-byatti, and M. S. Sarab Al Azawi, “Synthesis, structural and biological studies of /3-(1, 3- benzothiazol-2-yl) - /4H- spiro[indole2,3-[1,3]thiazolidine]- 2,/4(1H) dion with Cr (III), Mn (II), Co (II), Ni (II), Cu (II), and Zn (II) ions,” Engineering & Technology Journal, vol. 29, no. 15, pp. 3067–3078, 2011. View at Google Scholar
  14. D. Kumar, A. Kumar, and J. Sharma, “Physico-chemical studies on the coordination compounds of thiazolidin-4-one,” Journal of Chemistry, vol. 2013, Article ID 870325, 7 pages, 2013. View at Publisher · View at Google Scholar
  15. J. R. Anacona and I. Rodriguez, “Synthesis and antibacterial activity of cephalexin metal complexes,” Journal of Coordination Chemistry, vol. 57, no. 15, pp. 1263–1269, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. R. Anacona and J. Estacio, “Synthesis and antibacterial activity of cefixime metal complexes,” Transition Metal Chemistry, vol. 31, no. 2, pp. 227–231, 2006. View at Publisher · View at Google Scholar
  17. J. C. Duff and E. J. Bills, “The solubility of picric acid in mixed solvents. Part II. Benzene-alcohol mixtures,” Journal Ofthe Chemical Society, pp. 881–884, 1932. View at Google Scholar
  18. A. Syamal and D. Kumar, “Syntheses of new zirconium (IV) complexes with the tridentate Schiff bases derived from o-aminophenol and salicylaldehydes or 2-hydroxy-1-naphthaldehyde,” Indian Journal of Chemistry A, vol. 24, p. 62, 1985. View at Google Scholar
  19. F. G. Mann and B. C. Saunders, Practical Organic Chemistry, Longmans, London, UK, 1961.
  20. R. L. Dutta and A. Syamal, Elements of Magnetochemistry, Affiliated East-West Press, New Delhi, India, 2nd edition, 1993.
  21. P. V. Patel and K. R. Desai, “Synthesis and anti-bacterial activity of new isoxazolines derivatives of 3,5-diaryl isoxazolines,” Oriental Journal of Chemistry, vol. 18, no. 3, p. 311, 2002. View at Google Scholar
  22. D. C. Dash, A. Mahapatra, R. K. Mahapatra, S. Ghosh, and P. Naik, “Synthesis and characterization of dioxouranium(VI), thorium(IV), oxozirconium(IV) and oxovanadium(IV) complexes with 1,11-dihydroxy-1,4,5,7,8,11-hexaaza-2,3,9,10-tetramethyl-1,3,8,10-decatetraene-6- thione and their derivatives with chloroacetic acid,” Indian Journal of Chemistry, vol. 47A, pp. 1009–1013, 2008. View at Google Scholar
  23. R. U. Roy and K. R. Desai, “Anticancer evaluation of azetidinone and thiazolidinone derivatives of quinolone,” International Journal of Chemical Sciences, vol. 3, no. 3, p. 529, 2005. View at Google Scholar
  24. A. Syamal and O. P. Singhal, “New dioxouranium(VI)complexes with tridentate dibasic schiff bases containing ONO donor sets,” Transition Metal Chemistry, vol. 4, no. 3, pp. 179–182, 1979. View at Google Scholar
  25. A. Syamal and D. Kumar, “New zirconium (IV) complexes with the ons donor triden tate schiff bases derived from salicyaldehyde or substituted salicylal dehydes and 2-aminobih anethiol,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 14, no. 3, p. 325, 1984. View at Publisher · View at Google Scholar
  26. D. Kumar, A. Syamal, A. Gupta, M. Rani, and P. K. Gupta, “Role of pH on the formation of the coordination compounds with the schiff base derived from 3-formylsalicylic acid and 4-amino-2,3-dimethyl-l-phenyl-3-pyrazolin-5-one,” Journal of the Indian Chemical Society, vol. 87, no. 10, pp. 1185–1197, 2010. View at Google Scholar
  27. J. R. Anacona and C. Toledo, “Synthesis and antibacterial activity of metal complexes of ciprofloxacin,” Transition Metal Chemistry, vol. 26, no. 1-2, pp. 228–231, 2001. View at Publisher · View at Google Scholar
  28. D. Kumar, A. Syamal, A. Kumar, P. K. Gupta, and D. Dass, “Syntheses and characterization of coordination compounds of N-(2-mercaptoethyl)-4-(3′-carboxy-2′-hydroxyphenyl)-2-azetidinone,” Journal of the Indian Chemical Society, vol. 87, no. 4, pp. 417–423, 2010. View at Google Scholar · View at Scopus
  29. D. Kumar, A. Syamal, and L. K. Sharma, “Synthesis and characterization of polystyrene-anchored monobasic bidentate schiff base and its complexes with bi-, tri-, tetra- and hexavalent metal ions,” Journal of Coordination Chemistry, vol. 61, no. 11, pp. 1788–1796, 2008. View at Publisher · View at Google Scholar
  30. D. Kumar, P. K. Gupta, A. Kumar, D. Dass, and A. Syamal, “Syntheses, spectroscopic, and magnetic properties of polystyrene-anchored coordination compounds of tridentate ONO donor schiff base,” Journal of Coordination Chemistry, vol. 64, no. 4, pp. 590–599, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. R. Charasia, “Cu(II), Ni(II) and Co(II) complexes of N-phenyl-benzothiazolyl thiocarbamide,” Journal of Inorganic and Nuclear Chemistry, vol. 37, no. 6, pp. 1547–1548, 1975. View at Publisher · View at Google Scholar
  32. J. K. Nag, S. Pal, and C. Sinha, “Synthesis and characterization of cobalt(II), nickel(II), copper(II), palladium(II) and dioxouranium(VI) complexes of the antipyrine schiff base of 3-formylsalicylic acid,” Transition Metal Chemistry, vol. 30, no. 5, pp. 523–526, 2005. View at Publisher · View at Google Scholar
  33. A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, The Netherlands, 2nd edition, 1984.
  34. A. Syamal, D. Kumar, A. K. Singh et al., “Syntheses and characterization of a chelating resin containing ONO donor tridentate Schiff Base and its coordination compounds with copper (II). nickel(II), cobalt(II), iron(III), zinc(II), cadmium(II), manganese(II), molybdenum(VI), zirconium(IV) and uranium(VI),” Indian Journal of Chemistry, vol. 41, no. 7, pp. 1385–1390, 2002. View at Google Scholar
  35. J. E. Huheey, Inorganic Chemistry, Principles of Structure and Reactivity, Harper and Row Publishers, New York, NY, USA, 3rd edition, 1983.
  36. F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann, Advanced Inorganic Chemistry, John Wiley, New York, NY, USA, 6th edition, 1999.