Table of Contents
International Journal of Inorganic Chemistry
Volume 2015 (2015), Article ID 607178, 5 pages
http://dx.doi.org/10.1155/2015/607178
Research Article

Synthesis, Characterisation, and Biological Evaluation of Zn(II) Complex with Tridentate (NNO Donor) Schiff Base Ligand

1Department of Chemistry, Sadhu Vaswani College, Bairagarh, Bhopal 462030, India
2Department of Chemistry, Govt. P.G. College Rajouri, Rajouri, Jammu and Kashmir 185131, India
3P.G. Department of Chemistry, University of Jammu, Jammu and Kashmir 180006, India
4School of Biotechnology, University of Jammu, Jammu and Kashmir 180006, India

Received 19 September 2014; Revised 12 November 2014; Accepted 20 November 2014

Academic Editor: Alfonso Castiñeiras

Copyright © 2015 Nayaz Ahmed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Shibuya, K. Nabari, M. Kondo et al., “The copper(II) complex with two didentate schiff base ligands. The unique rearrangment that proceeds under alcohol vapor in the solid state to construct noninclusion structure,” Chemistry Letters, vol. 37, no. 1, pp. 78–79, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. B. J. Gangani and P. H. Parsania, “Microwave-irradiated and classical syntheses of symmetric double Schiff bases of 1,1′-bis(4-aminophenyl)cyclohexane and their physicochemical characterization,” Spectroscopy Letters, vol. 40, no. 1, pp. 97–112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. B. S. Kumari, G. Rijulal, and K. Mohanan, “Microwave assisted synthesis, spectroscopic, thermal and biological studies of some lanthanide(III) chloride complexes with a heterocyclic schiff base,” Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, vol. 39, no. 1, pp. 24–30, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Thankamony and K. Mohanan, “Synthesis, spectral studies, thermal decomposition kinetics, reactivity and antibacterial activity of some lanthanide(III) nitrate complexes of 2-(N-indole-2-one)amino-3-carboxyethyl-4,5,6,7-tetrahydrobenzo[b]thiophene,” Indian Journal of Chemistry A, vol. 46, no. 2, pp. 247–251, 2007. View at Google Scholar · View at Scopus
  5. N. Raman, J. D. Raja, and A. Sakthivel, “Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies,” Journal of Chemical Sciences, vol. 119, no. 4, pp. 303–310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Halli and V. B. Patil, “Synthesis, spectral characterization and DNA cleavage studies of Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) complexes with benzofuran-2-carbohydrazide schiff bases,” Indian Journal of Chemistry A, vol. 50, no. 5, pp. 664–669, 2011. View at Google Scholar
  7. K. Shivakumar and M. B. Halli, “Synthesis, characterization and antimicrobial studies on metal complexes with a naphthofuran thiosemicarbazide derivatives,” Journal of Coordination Chemistry, vol. 59, no. 16, pp. 1847–1856, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Bharti, S. Sharma, F. Naqvi, and A. Azam, “New palladium(II) complexes of 5-nitrothiophene-2-carboxaldehyde thiosemicarbazones: synthesis, spectral studies and in vitro anti-amoebic activity,” Bioorganic & Medicinal Chemistry, vol. 11, no. 13, pp. 2923–2929, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. A. A. Soliman, “Synthesis and properties of new substituted 1,2,4-triazoles: potential antitumor agents,” Journal of Thermal Analytic Calculation, no. 63, p. 221, 2001. View at Google Scholar
  10. A. F. Petrovic, D. M. Petrovic, V. M. Leovac, and M. Budimir, “Ruthenium(II) complexes containing bidentate Schiff bases and their antifungal activity,” Journal of Thermal Analytic Calculation, vol. 58, p. 589, 1999. View at Google Scholar
  11. Ivanovic, K. Andjelkovic, V. M. Leovac, L. J. Klisarov, M. Lazavevic, and D. Minic, “Molecular design of mononuclear complexes of acyclic Schiff-base ligands, Journal of Coordination Chemistry,” Journal of Thermal Analytic Calculation, vol. 46, p. 1741, 1996. View at Google Scholar
  12. Z. M. Zaki, S. S. Haggag, and A. A. Soayed, “Synthesis, spectral characterization and DNA cleavage studies of Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) complexes with benzofuran-2- carbohydrazide schiff bases,” Spectroscopy Letters, vol. 31, p. 757, 1998. View at Google Scholar
  13. S. O. Podunavac-Kuzmanovic, D. M. Cvetkovicand, and L. S. Vojinnovic, “Synthesis, characterization and molecular structure of a new tetramericpalladium ( II) complex containing Schiff bases derived from AMTTO (AMTT = 4-amino-6-methyl-1,2,4-triazine-thione-5-one),” Original Scientific Paper, APTEFF, vol. 35, pp. 1–280, 2004. View at Google Scholar
  14. A. Mobinikhaledi, N. Forughifar, and M. Kalhor, “Synthesis, characterization, DNA binding and nuclease activity of binuclear copper( II) complexes of cuminaldehydethiosemicarbazones,” Turkish Journal of Chemistry, vol. 34, pp. 367–373, 2010. View at Google Scholar
  15. S. O. Podunavc-Kuzmanovic, L. Vojinovic, and D. M. Cvetkovic, “Synthesis, structure and biological activity of a new and efficient Cd(II)-uracil derivative complex system for cleavage of DNA,” ISIRR, vol. 64, pp. 40–44, 2003. View at Google Scholar
  16. I. Vogel, Quantitative Inorganic Analysis, Longman Green and Co, London, UK, 1959.
  17. C. Perez, M. Paul, and p. Bazerque, “An antibiotic assay by the agar well diffusion method,” Acta Biologiae et Medicinae Experimentalis, vol. 15, pp. 113–115, 1990. View at Google Scholar
  18. R. Nair, T. Kalyariya, and S. Chanda, “Antibacterial activity of some selected Indian medicinal flora,” Turkish Journal of Biology, vol. 29, pp. 41–47, 2005. View at Google Scholar
  19. K. Singh, Y. Kumar, P. Puri, C. Sharma, and K. R. Aneja, “Synthesis, spectroscopic, thermal and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with Schiff base derived from 4-amino-3-mercapto-6-methyl-5-oxo-1,2,4-triazine,” Medicinal Chemistry Research, vol. 21, no. 8, pp. 1708–1716, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. W. J. Geary, “The use of conductivity measurements in organic solvents for the characterisation of coordination compounds,” Coordination Chemistry Reviews, vol. 7, no. 1, pp. 81–122, 1971. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Murali Krishna, K. Hussain Reddy, J. P. Pandey, and S. Dayananda, “Synthesis, characterization, DNA binding and nuclease activity of binuclear copper(II) complexes of cuminaldehyde thiosemicarbazones,” Transition Metal Chemistry, vol. 33, no. 5, pp. 661–668, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Shanker, R. Rohini, K. Shravankumar, P. M. Reddy, Y.-P. Ho, and V. Ravinder, “Synthesis of tetraaza macrocyclic PdII complexes; antibacterial and catalytic studies,” Journal of the Indian Chemical Society, vol. 86, no. 2, pp. 153–161, 2009. View at Google Scholar · View at Scopus
  23. M. L. Hari Kumaran Nair and L. Shamla, “Synthesis, spectral and thermal studies of copper(II) complexes of azodyes derived from 2,3-dimethyl-1-phenyl-4-amino-5-pyrazolone,” Journal of the Indian Chemical Society, vol. 86, no. 2, pp. 133–138, 2009. View at Google Scholar · View at Scopus
  24. V. Reddy, N. Patil, and B. R. Patel, “Synthesis and characterization of Co(II), Ni(II), and (II) complexes with O,N and S donar ligands,” Journal of Indian Council of Chemists, vol. 23, no. 2, pp. 1–3, 2006. View at Google Scholar
  25. V. D. Bhatt and A. Ray, “Synthesis, characterization and electrical conductivity of polyesters, polyamides and doped polymers,” Synthetic Metals, vol. 92, no. 2, pp. 115–120, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Prakash, C. Kumar, S. Prakash, A. K. Gupta, and K. R. R. P. Singh, “Synthesis, spectral characterization and antimicrobial studies of some new binuclear complexes of CuII and NiII Schiff base,” Journal of the Indian Chemical Society, vol. 86, no. 12, pp. 1257–1261, 2009. View at Google Scholar · View at Scopus
  27. N. Raman, S. Esthar, and C. Thangaraja, “A new Mannich base and its transition metal (II) complexes—synthesis, structural characterization and electrochemical study,” Journal of Chemical Sciences, vol. 116, no. 4, pp. 209–213, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Revanasiddapa, T. Suresh, S. Khasim, S. C. Raghvendra, C. Basvaraja, and S. D. Angadi, “Synthesis and anti-tuberculosis activity of N-aryl-C-nitroazoles,” Egyptian Journal of Chemistry, vol. 5, no. 2, p. 395, 2008. View at Google Scholar
  29. A. H. Osman, M. S. Saleh, and S. M. Mahmoud, “Synthesis, characterization, and photochemical studies of some copper complexes of schiff bases derived from 3-hydrazino-6-methyl[1,2,4]triazin-5(4H) one,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 34, no. 6, pp. 1069–1085, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. A. D. Kulkarni, S. A. Patil, and P. S. Badami, “SNO donor Schiff bases and their Co(II), Ni(II) and Cu(II) complexes: synthesis, characterization, electrochemical and antimicrobial studies,” Journal of Sulfur Chemistry, vol. 30, no. 2, pp. 145–159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Singh, Dharmapal, and S. S. Dheman, “Synthesis and characterization of Co(II), Ni(II), and Cu(II) complexes with O,N and S donor ligands,” Journal of the Iranian Chemical Society, vol. 7, no. 1, 2010. View at Google Scholar
  32. A. S. Kuwar, S. R. Shimpi, P. P. Madhukar, and R. S. Bhendre, “Synthesis of tetraazamacrocyclic PdII complexes; antibacterial and catalytic studies Journal of the Indian Chemical Society,” Journal of Scientific and Industrial Research, vol. 65, p. 665, 2006. View at Google Scholar
  33. S. Chandra and A. Kumar, “Synthesis, characterization and antimicrobial studies on metal complexes with a naphthofuranthiosemicarbazide derivatives,” Journal of the Indian Chemical Society, vol. 83, p. 993, 2006. View at Google Scholar
  34. A. Kashem Liton and M. Rabiul Islam, “The copper( II) complex with two didentateschiff base ligands. The unique rearrangment that proceeds under alcohol vapor in the solid state to construct noninclusion structure,” Journal of Pharmacology, no. 1, p. 10, 2006. View at Google Scholar
  35. R. Franski, B. Giercyzyk, G. Schroeder, S. Pieper, A. Springer, and M. Linscheid, “Antibacterial Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff bases derived from fluorobenzaldehyde and triazoles,” Central European Journal of Chemistry, vol. 5, no. 1, pp. 316–329, 2007. View at Publisher · View at Google Scholar
  36. G. B. Bagihalli, P. G. Avaji, S. A. Patil, and P. S. Badami, “Synthesis, spectral characterization, in vitro antibacterial, antifungal and cytotoxic activities of Co(II), Ni(II) and Cu(II) complexes with 1,2,4-triazole Schiff bases,” European Journal of Medicinal Chemistry, vol. 43, no. 12, pp. 2639–2649, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. A. K. Singh, O. P. Pandey, and S. K. Sengupta, “Synthesis, spectral characterization and biological activity of zinc(II) complexes with 3-substituted phenyl-4-amino-5-hydrazino-1, 2, 4-triazole Schiff bases,” Spectrochimica Acta—Part A: Molecular and Biomolecular Spectroscopy, vol. 85, no. 1, pp. 1–6, 2012. View at Publisher · View at Google Scholar · View at Scopus