Table of Contents
International Journal of Inorganic Chemistry
Volume 2016, Article ID 7095624, 5 pages
http://dx.doi.org/10.1155/2016/7095624
Research Article

Structural Prediction of Bis(di-p-anisole)-1,4-azabutadiene-bis[triphenylphosphine]ruthenium(II) Using 31P NMR Spectroscopy

Department of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

Received 22 March 2016; Accepted 1 September 2016

Academic Editor: Alfonso Castiñeiras

Copyright © 2016 Meng Guan Tay et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Damadian, “Tumor detection by nuclear magnetic resonance,” Science, vol. 171, no. 3976, pp. 1151–1153, 1971. View at Publisher · View at Google Scholar · View at Scopus
  2. I. D. Weisman, L. H. Bennett, L. R. Maxwell Sr., and D. E. Henson, “Cancer detection by NMR in the living animal,” Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, vol. 80, no. 3, pp. 439–450, 1976. View at Publisher · View at Google Scholar
  3. S. Tiziani, V. Lopes, and U. L. Günther, “Early stage diagnosis of oral cancer using 1H NMR-Based metabolomics,” Neoplasia, vol. 11, no. 3, pp. 269–276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. D. G. Gorenstein, “Non-biological aspects of phosphorus-31 NMR spectroscopy,” Progress in Nuclear Magnetic Resonance Spectroscopy, vol. 16, pp. 1–98, 1984. View at Publisher · View at Google Scholar · View at Scopus
  5. P. S. Pregosin and R. W. Kunz, 31P and 13C NMR spectroscopy of Transition Metal Complexes, Springer, Heidelberg, Germany, 1979.
  6. P. Meakin, J. P. Jesson, and C. A. Tolman, “Nature of chlorotris(triphenylphosphine)rhodium in solution and its reaction with hydrogen,” Journal of the American Chemical Society, vol. 94, no. 9, pp. 3240–3242, 1972. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Dharmaraj, P. Viswanathamurthi, and K. Natarajan, “Ruthenium(II) complexes containing bidentate Schiff bases and their antifungal activity,” Transition Metal Chemistry, vol. 26, no. 1-2, pp. 105–109, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. V. V. Grushin, C. Bensimon, and H. Alper, “Potassium complexes containing both crown ether and tertiary phosphine oxide ligands,” Inorganic Chemistry, vol. 32, no. 3, pp. 345–346, 1993. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Ahmed, M. Riaz, A. Ahmed, and M. Bhagat, “Synthesis, characterisation, and biological evaluation of Zn(II) complex with tridentate (NNO Donor) schiff base ligand,” International Journal of Inorganic Chemistry, vol. 2015, Article ID 607178, 5 pages, 2015. View at Publisher · View at Google Scholar
  10. N. Bharti, Shailendra, S. Sharma, F. Naqvi, and A. Azam, “New palladium(II) complexes of 5-nitrothiophene-2-carboxaldehyde thiosemicarbazones: synthesis, spectral studies and in vitro anti-amoebic activity,” Bioorganic & Medicinal Chemistry, vol. 11, no. 13, pp. 2923–2929, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. N. H. Al-Sha'alan, “Antimicrobial activity and spectral, magnetic and thermal studies of some transition metal complexes of a Schiff base hydrazone containing a quinoline moiety,” Molecules, vol. 12, no. 5, pp. 1080–1091, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Jayaseelan, S. Prasad, S. Vedanayaki, and R. Rajavel, “Synthesis, characterization, anti-microbial, DNA binding and cleavage studies of Schiff base metal complexes,” Arabian Journal of Chemistry, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. G. Tay, Z. Ngaini, M. A. M. Arif et al., “Complexation of bis-2-(benzylideneamino)phenol to cobalt(II) and zinc(II), and their spectroscopic studie,” Borneo Journal of Resource Science and Technology, vol. 3, no. 1, pp. 26–34, 2013. View at Google Scholar