Table of Contents Author Guidelines Submit a Manuscript
International Journal of Medicinal Chemistry
Volume 2012, Article ID 148235, 7 pages
http://dx.doi.org/10.1155/2012/148235
Research Article

Syntheses and Biological Activity of Some Derivatives of C-9154 Antibiotic

1Department of Chemistry, Ahmadu Bello University, Zaria 810001, Nigeria
2Division of Agricultural Colleges, College of Agriculture, Ahmadu Bello University, Zaria 810001, Nigeria
3School of Chemistry and Biochemistry, University of Zululand, Empangeni 3880, South Africa

Received 26 May 2012; Revised 20 June 2012; Accepted 20 June 2012

Academic Editor: Feng Liang

Copyright © 2012 Isaac Asusheyi Bello et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Aronson, “The naming of antibiotics,” Medicine and Health, vol. 80, no. 6, article 180, 1997. View at Google Scholar · View at Scopus
  2. M. Radetsky, “The discovery of penicillin,” The Pediatric Infectious Disease Journal, vol. 15, no. 9, pp. 811–818, 1996. View at Google Scholar · View at Scopus
  3. S. A. Waksman, “What is an antibiotic or an antibiotic substance?” Mycologia, vol. 39, no. 5, pp. 565–569, 1947. View at Publisher · View at Google Scholar
  4. F. von Nussbaum, M. Brands, B. Hinzen, S. Weigand, and D. Häbich, “Antibacterial natural products in medicinal chemistry—exodus or revival?” Angewandte Chemie—International Edition, vol. 45, no. 31, pp. 5072–5129, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. H. B. Maruyama, Y. Suhara, J. Suzuki Watanabe et al., “A new antibiotic, fumaramidmycin. I. Production, biological properties and characterization of producer strain,” Journal of Antibiotics, vol. 28, no. 9, pp. 636–647, 1975. View at Google Scholar · View at Scopus
  6. T. Hasegawa, M. Asai, K. Haibara, T. Yamano, H. Iwasaki, and M. Yoneda, “A new antibiotic, C-9154,” Journal of Antibiotics, vol. 28, no. 9, pp. 713–716, 1975. View at Google Scholar · View at Scopus
  7. Y. Suhara, H. B. Maruyama, Y. Kotoh et al., “A new antibiotic, fumaramidmycin. II. Isolation, structure and syntheses,” Journal of Antibiotics, vol. 28, no. 9, pp. 648–655, 1975. View at Google Scholar · View at Scopus
  8. J. Jumina, D. Siswanta, and A. K. Zulkarnain, “Sintesis dan Uji Aktivitas Biologis Turunan Antibiotik C-9154 Dari Vanilin,” Majalah Farmasi Indonesia, vol. 12, no. 3, pp. 24–35, 2001. View at Google Scholar
  9. J. Jumina, I. Tahir, and A. K. Zulkarnain, “Synthesis and antimicrobe activity evaluation of ethyl salicyl fumarate and ethyl furfuryl fumarate,” Majalah Farmasi Indonesia, vol. 13, no. 4, pp. 207–214, 2002. View at Google Scholar
  10. J. Jumina, A. K. Zulkarnain, and P. Mulyono, “Preparation and antibacterial activity of p-Anisyl ethyl fumarate and ethyl N-phenyl fumaramate,” Majalah Farmasi Indonesia, vol. 16, no. 2, pp. 116–123, 2005. View at Google Scholar
  11. F. L. Strand, “The plasma membrane as a regulatory organelle,” in Physiology: A Regulatory Systems Approach, pp. 49–67, MacMillan, New York, NY, USA, 2nd edition, 1983. View at Google Scholar
  12. R. Eckert, D. Randall, and G. Augustine, “Permeability and transport,” in Animal Physiology, pp. 65–99, W. H. Freeman, New York, NY, USA, 3rd edition, 1988. View at Google Scholar
  13. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, “The plasma membrane,” in Molecular Biology of the Cell, pp. 276–337, Garland, New York, NY, USA, 2nd edition, 1989. View at Google Scholar