Table of Contents Author Guidelines Submit a Manuscript
International Journal of Medicinal Chemistry
Volume 2012, Article ID 157125, 6 pages
http://dx.doi.org/10.1155/2012/157125
Research Article

Comparative Analysis of the Antioxidant Activity of Cassia fistula Extracts

1Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
2School of Chemical Sciences, Central University of Gujarat, Gujarat, Gandhinagar 382030, India
3Department of Medical Education, College of Medicine, King Saud University, Riyadh 11321, Saudi Arabia

Received 24 May 2012; Revised 27 August 2012; Accepted 27 August 2012

Academic Editor: Hussein El-Subbagh

Copyright © 2012 Md. Irshad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. G. Patel, S. S. Karbhari, O. D. Gulati, and S. D. Gokhale, “Antipyretic and analgesic activities of Aconitum spicatum and Cassia fistula,” Pharmaceutical Biology, vol. 157, no. 1, pp. 22–27, 1965. View at Google Scholar · View at Scopus
  2. M. M. A. Rizvi, M. Irshad, G. El Hassadi, and S. B. Younis, “Bioefficacies of Cassia fistula: an Indian labrum,” African Journal of Pharmacy and Pharmacology, vol. 3, no. 6, pp. 287–292, 2009. View at Google Scholar · View at Scopus
  3. T. Bhakta, P. K. Mukherjee, K. Mukherjee, M. Pal, and B. P. Saha, “Studies on in vivo wound healing activity of Cassia fistula linn. Leaves (Leguminosae) in rats,” Natural Product Sciences, vol. 4, no. 2, pp. 84–87, 1998. View at Google Scholar · View at Scopus
  4. M. Irshad, M. Singh, and M. M. A. Rizvi, “Assessment of anthelmintic activity of Cassia fistula L,” Middle East Journal of Science and Research, vol. 5, pp. 346–349, 2010. View at Google Scholar
  5. M. Irshad, S. Shreaz, N. Manzoor, L. A. Khan, and M. M. A. Rizvi, “Anticandidal activity of Cassia fistula and its effect on ergosterol biosynthesis,” Pharmaceutical Biology, vol. 49, no. 7, pp. 727–733, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventós, “Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent,” Methods in Enzymology, vol. 299, pp. 152–178, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Zhishen, T. Mengcheng, and W. Jianming, “The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals,” Food Chemistry, vol. 64, no. 4, pp. 555–559, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Miliauskas, P. R. Venskutonis, and T. A. Van Beek, “Screening of radical scavenging activity of some medicinal and aromatic plant extracts,” Food Chemistry, vol. 85, no. 2, pp. 231–237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Boonchum, Y. Peerapornpisal, D. Kanjanapothi et al., “Antioxidant activity of some seaweed from the Gulf of Thailand,” International Journal of Agriculture and Biology, vol. 13, no. 1, pp. 95–99, 2011. View at Google Scholar · View at Scopus
  10. S. Dudonné, X. Vitrac, P. Coutiére, M. Woillez, and J. M. Mérillon, “Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays,” Journal of Agricultural and Food Chemistry, vol. 57, no. 5, pp. 1768–1774, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Luqman, S. Srivastava, R. Kumar, A. K. Maurya, and D. Chanda, “Experimental assessment of Moringa oleifera leaf and fruit for its antistress, antioxidant, and scavenging potential using in vitro and in vivo assays,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 519084, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Yu, S. Haley, J. Perret, M. Harris, J. Wilson, and M. Qian, “Free radical scavenging properties of wheat extracts,” Journal of Agricultural and Food Chemistry, vol. 50, no. 6, pp. 1619–1624, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. G. P. Ganu, S. S. Jadhav, and A. D. Deshpande, “Antioxidant and antihyperglycemic potential of methanolic extract of bark of mimusops elengi l. In mice,” International Journal of Phytomedicine, vol. 2, no. 2, pp. 116–123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Oyaizu, “Studies on products of browning reactions: antioxidant activities of products of browning reaction prepared from glucose amine,” Japanese Journal of Nutrition, vol. 44, pp. 307–315, 1986. View at Google Scholar
  15. K. Zhou and L. Yu, “Effects of extraction solvent on wheat bran antioxidant activity estimation,” LWT—Food Science and Technology, vol. 37, no. 7, pp. 717–721, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Sun and C. T. Ho, “Antioxidant activities of buckwheat extracts,” Food Chemistry, vol. 90, no. 4, pp. 743–749, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Mohamed, M. Ons, E. T. Yosra, S. Rayda, G. Neji, and N. Moncef, “Chemical composition and antioxidant and radical-scavenging activities of Periploca laevigata root bark extracts,” Journal of the Science of Food and Agriculture, vol. 89, no. 5, pp. 897–905, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. O. I. Aruoma, “Free radicals, oxidative stress, and antioxidants in human health and disease,” Journal of the American Oil Chemists' Society, vol. 75, no. 2, pp. 199–212, 1998. View at Google Scholar · View at Scopus
  19. J. Burgess and R. H. Prince, “1132. Kinetics of reactions of ligand-substituted tris-(2,2′- bipyridyl)iron(II) complexes,” Journal of the Chemical Society, pp. 6061–6066, 1965. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Cyfert, “Kinetics of reaction of Fephen32+ with hydrogen peroxide in neutral medium,” Inorganica Chimica Acta, vol. 98, no. 1, pp. 25–28, 1985. View at Google Scholar · View at Scopus
  21. C. Walling, “Fenton's reagent revisited,” Accounts of Chemical Research, vol. 8, no. 4, pp. 125–131, 1975. View at Google Scholar · View at Scopus
  22. A. Yildirim, A. Mavi, M. Oktay, A. A. Kara, O. F. Algur, and V. Bilaloglu, “Comparison of antioxidant and antimicrobial activities of Tilia (Tilia argentea Desf ex DC), sage (Salvia triloba L.), and Black tea (Camellia sinensis) extracts,” Journal of Agricultural and Food Chemistry, vol. 48, no. 10, pp. 5030–5034, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. I. C. F. R. Ferreira, P. Baptista, M. Vilas-Boas, and L. Barros, “Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: individual cap and stipe activity,” Food Chemistry, vol. 100, no. 4, pp. 1511–1516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Shimada, K. Fujikawa, K. Yahara, and T. Nakamura, “Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion,” Journal of Agricultural and Food Chemistry, vol. 40, no. 6, pp. 945–948, 1992. View at Google Scholar · View at Scopus
  25. N. R. Bhalodia, P. B. Nariya, R. N. Acharya, and V. J. Shukla, “Evaluation of in vitro antioxidant activity of flowers of Cassia fistula Linn,” International Journal of PharmTech Research, vol. 3, pp. 589–599, 2011. View at Google Scholar
  26. I. I. Koleva, T. A. Van Beek, J. P. H. Linssen, A. De Groot, and L. N. Evstatieva, “Screening of plant extracts for antioxidant activity: a comparative study on three testing methods,” Phytochemical Analysis, vol. 13, no. 1, pp. 8–17, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. I. F. F. Benzie and Y. T. Szeto, “Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay,” Journal of Agricultural and Food Chemistry, vol. 47, no. 2, pp. 633–636, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. M. H. Gordon, “The mechanism of antioxidant action in-vitro,” in Food Antioxidants, B. J. F. Hudson, Ed., pp. 1–18, Elsevier Applied Science, London, UK, 1990. View at Google Scholar
  29. P. D. Duh, P. C. Du, and G. C. Yen, “Action of methanolic extract of mung bean hulls as inhibitors of lipid peroxidation and non-lipid oxidative damage,” Food and Chemical Toxicology, vol. 37, no. 11, pp. 1055–1061, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. C. A. Rice-Evans, N. J. Miller, and G. Paganga, “Antioxidant properties of phenolic compounds,” Trends in Plant Science, vol. 4, pp. 304–309, 1997. View at Google Scholar