Table of Contents
International Journal of Manufacturing Engineering
Volume 2014 (2014), Article ID 596128, 12 pages
http://dx.doi.org/10.1155/2014/596128
Research Article

Enhancing Multistage Deep-Drawing and Ironing Manufacturing Processes of Axisymmetric Components: Analysis and Experimentation

1EXPAL Systems, Avenida Partenón 16, 28042 Madrid, Spain
2School of Industrial Engineering, University of Castilla-La Mancha, Albacete, Spain
3School of Industrial Engineering, UNED, 28042 Madrid, Spain
4School of Engineering, Cardiff University, Cardiff, UK

Received 7 February 2014; Accepted 4 May 2014; Published 29 May 2014

Academic Editor: Jean-Yves Hascoet

Copyright © 2014 F. Javier Ramírez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. K. Leu, “The limiting drawing ratio for plastic instability of the cup-drawing process,” Journal of Materials Processing Technology, vol. 86, no. 1–3, pp. 168–176, 1998. View at Google Scholar · View at Scopus
  2. P. Sonis, N. V. Reddy, and G. K. Lal, “On multistage deep drawing of axisymmetric components,” Journal of Manufacturing Science and Engineering, vol. 125, no. 2, pp. 352–362, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. R. K. Verma and S. Chandra, “An improved model for predicting limiting drawing ratio,” Journal of Materials Processing Technology, vol. 172, no. 2, pp. 218–224, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Padmanabhan, M. C. Oliveira, A. J. Baptista, J. L. Alves, and L. F. Menezes, “Blank design for deep drawn parts using parametric NURBS surfaces,” Journal of Materials Processing Technology, vol. 209, no. 5, pp. 2402–2411, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Agrawal, N. V. Reddy, and P. M. Dixit, “Determination of optimum process parameters for wrinkle free products in deep drawing process,” Journal of Materials Processing Technology, vol. 191, no. 1–3, pp. 51–54, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Haddadzadeh, M. R. Razfar, and M. R. M. Mamaghani, “Novel approach to initial blank design in deep drawing using artificial neural network,” Proceedings of the Institution of Mechanical Engineers B: Journal of Engineering Manufacture, vol. 223, no. 10, pp. 1323–1330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Chamekh, S. Ben Rhaiem, H. Khaterchi, H. Bel Hadj Salah, and R. Hambli, “An optimization strategy based on a metamodel applied for the prediction of the initial blank shape in a deep drawing process,” International Journal of Advanced Manufacturing Technology, vol. 50, no. 1–4, pp. 93–100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Sezek, V. Savas, and B. Aksakal, “Effect of die radius on blank holder force and drawing ratio: A model and experimental investigation,” Materials and Manufacturing Processes, vol. 25, no. 7, pp. 557–564, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Padmanabhan, M. C. Oliveira, J. L. Alves, and L. F. Menezes, “Influence of process parameters on the deep drawing of stainless steel,” Finite Elements in Analysis and Design, vol. 43, no. 14, pp. 1062–1067, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Mori and H. Tsuji, “Cold deep drawing of commercial magnesium alloy sheets,” CIRP Annals-Manufacturing Technology, vol. 56, no. 1, pp. 285–288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. L. M. A. Hezam, M. A. Hassan, I. M. Hassab-Allah, and M. G. El-Sebaie, “Development of a new process for producing deep square cups through conical dies,” International Journal of Machine Tools and Manufacture, vol. 49, no. 10, pp. 773–780, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. H. C. Tseng, C. Hung, and C. C. Huang, “An analysis of the formability of aluminum/copper clad metals with different thicknesses by the finite element method and experiment,” International Journal of Advanced Manufacturing Technology, vol. 49, no. 9–12, pp. 1029–1036, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. B. C. Hwang, S. M. Han, W. B. Bae, and C. Kim, “Development of an automated progressive design system with multiple processes (piercing, bending, and deep drawing) for manufacturing products,” International Journal of Advanced Manufacturing Technology, vol. 43, no. 7-8, pp. 644–653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. K. V. Ramana and P. V. M. Rao, “Data and knowledge modeling for design-process planning integration of sheet metal components,” Journal of Intelligent Manufacturing, vol. 15, no. 5, pp. 607–623, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. G. C. Vosniakos, I. Segredou, and T. Giannakakis, “Logic programming for process planning in the domain of sheet metal forming with progressive dies,” Journal of Intelligent Manufacturing, vol. 16, no. 4-5, pp. 479–497, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Javier Ramírez and R. Domingo, “Application of an aided system to multi-step deep drawing process in the brass pieces manufacturing,” in Proceedings of the 3rd Manufacturing Engineering Society International Conference, MESIC 2009, pp. 370–379, Alcoy, Spain, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. F. J. Ramirez, R. Domingo, and M. A. Sebastian, “Design of an aided system to optimise times and costs in deep drawing process,” in Proceedings of the 2nd IPROMS International Researchers Symposium, vol. 1, pp. 191–196, Ischia, Italy, 2009.
  18. K. Lange, Handbook of Metal Forming, McGraw-Hill, New York, NY, USA, 1985.
  19. S. Y. Chung and S. H. Swift, “An experimental investigation into the re-drawing of cylindrical shells,” Proceedings of the Institution of Mechanical Engineers B: Journal of Engineering Manufacture, vol. 1, pp. 437–447, 1975. View at Google Scholar
  20. M. A. Sebastián and A. M. Sanchez-Perez, “Diseño asistido por ordenador de los útiles para la embutición profunda de piezas cilíndricas huecas,” Internal Report, ETSII, UPM, Madrid, Spain, 1980. View at Google Scholar
  21. F. J. Ramirez, R. Domingo, M. A. Sebastian, and M. S. Packianather, “The development of competencies in manufacturing engineering by means of a deep-drawing tool,” Journal of Intelligent Manufacturing, vol. 24, no. 3, pp. 457–472, 2011. View at Publisher · View at Google Scholar
  22. F. J. Ramirez, R. Domingo, and M. A. Sebastian, “A technological model applied to multi-stage deep drawing process of axisymmetric components,” in Proceedings of the 21st International Computer-Aided Production Engineering Conference (CAPE '10), Edinburgh, UK, 2010.
  23. E. Siebel and H. Beisswänger, Deep Drawing, Carl Hanser, Munich, Germany, 1995.
  24. E. M. Rubio, M. Marín, R. Domingo, and M. A. Sebastián, “Analysis of plate drawing processes by the upper bound method using theoretical work-hardening materials,” International Journal of Advanced Manufacturing Technology, vol. 40, no. 3-4, pp. 261–269, 2009. View at Publisher · View at Google Scholar · View at Scopus