Table of Contents
International Journal of Manufacturing Engineering
Volume 2014, Article ID 921081, 13 pages
http://dx.doi.org/10.1155/2014/921081
Research Article

Experimental Investigation and Multiobjective Optimization of Turning Duplex Stainless Steels

1Institute for Machine Tools, University of Stuttgart, Holzgartenstraße 17, 70174 Stuttgart, Germany
2IMWF, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany

Received 6 September 2014; Accepted 10 November 2014; Published 3 December 2014

Academic Editor: Godfrey C. Onwubolu

Copyright © 2014 Rastee D. Koyee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. A. Armas and S. M. Degalaix, Duplex Stainless Steels, ISTE Ltd, London, UK, 2009.
  2. E. C. Bordinassi, G. F. Batalha, S. Delijaicov, N. B. de Lima, and S. Paulo, “Superficial integrity analysis in a super duplex stainless steel after turning,” Journal of Achievements in Materials and Manufacturing Engineering, vol. 18, pp. 335–338, 2006. View at Google Scholar
  3. G. Królczyk, S. Legutko, and M. Gajek, “Predicting the surface roughness in the dry machining of duplex stainless steel (DSS),” Metalurgija, vol. 52, no. 2, pp. 259–262, 2013. View at Google Scholar · View at Scopus
  4. G. Królczyk, M. Gajek, and S. Legutko, “Effect of the cutting parameters impact on tool life in duplex stainless steel turning process,” Tehnicki Vjesnik, vol. 20, no. 4, pp. 587–592, 2013. View at Google Scholar · View at Scopus
  5. J. Nomani, A. Pramanik, T. Hilditch, and G. Littlefair, “Machinability study of first generation duplex (2205), second generation duplex (2507) and austenite stainless steel during drilling process,” Wear, vol. 304, no. 1-2, pp. 20–28, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. C. D. Oliveira Jr., A. Diniz, and R. Bertazzoli, “Correlating tool wear, surface roughness and corrosion resistance in the turning process of super duplex stainless steel,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 36, no. 4, pp. 775–785, 2013. View at Publisher · View at Google Scholar
  7. D. Philip Selvaraj, P. Chandramohan, and M. Mohanraj, “Optimization of surface roughness, cutting force and tool wear of nitrogen alloyed duplex stainless steel in a dry turning process using Taguchi method,” Measurement, vol. 49, no. 1, pp. 205–215, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. Coello CAC, “An updated survey of evolutionary multiobjective optimization techniques: state of the art and future trends,” in Proceedings of the Congress on Evolutionary Computation (CEC '99), pp. 3–13, Washington, DC, USA, July 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization using genetic algorithms: a tutorial,” Reliability Engineering and System Safety, vol. 91, no. 9, pp. 992–1007, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. X.-S. Yang, “Multi-objective optimization,” in Nature-Inspired Optimization Algorithms, X.-S. Yang, Ed., chapter 14, pp. 197–211, Elsevier, Oxford, UK, 2014. View at Publisher · View at Google Scholar
  11. CECIMO, Concept Description for CECIMO’s Self -Regulatory Initiative (SRI) for the Sector Specific Implementation of the Directive 2005/32/EC (EuP Directive) Goal of the SRI Scope of the SRI, 2011.