Table of Contents
International Journal of Metals
Volume 2016 (2016), Article ID 6509469, 8 pages
http://dx.doi.org/10.1155/2016/6509469
Research Article

Interaction of Two Water Soluble Heterocyclic Hydrazones on Copper in Nitric Acid: Electrochemical, Surface Morphological, and Quantum Chemical Investigations

1Department of Chemistry, Government Engineering College Thrissur, Kerala 680009, India
2Department of Chemistry, St. Thomas’ College (Autonomous) Thrissur, Kerala 680001, India

Received 23 June 2016; Revised 22 September 2016; Accepted 13 October 2016

Academic Editor: Manoj Gupta

Copyright © 2016 Vinod P. Raphael et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Zarrouk, T. Chelfi, A. Dafali et al., “Comparative study of new pyridazine derivatives towards corrosion of copper in nitric acid: part-1,” International Journal of Electrochemical Science, vol. 5, no. 5, pp. 696–705, 2010. View at Google Scholar · View at Scopus
  2. K. Barouni, L. Bazzi, R. Salghi et al., “Some amino acids as corrosion inhibitors for copper in nitric acid solution,” Materials Letters, vol. 62, no. 19, pp. 3325–3327, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. A. El-Shafel, H. A. Mostafa, A. S. Fouda, and S. A. Abd El-Maksoud, “Inhibition of copper corrosion in 1M nitric acid with benzoyl benzaldehyde hydrazone derivatives,” Materials and Corrosion, vol. 46, no. 8, pp. 468–472, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Karthik and M. Sundaravadivelu, “Investigations of the inhibition of copper corrosion in nitric acid solutions by levetiracetam drug,” Egyptian Journal of Petroleum, vol. 5, pp. 696–705, 2015. View at Publisher · View at Google Scholar
  5. E. M. Sherif and S.-M. Park, “Effects of 2-amino-5-ethylthio-1,3,4-thiadiazole on copper corrosion as a corrosion inhibitor in aerated acidic pickling solutions,” Electrochimica Acta, vol. 51, no. 28, pp. 6556–6562, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Szőcs, Gy. Vastag, A. Shaban, and E. Kálmán, “Electrochemical behaviour of an inhibitor film formed on copper surface,” Corrosion Science, vol. 47, no. 4, pp. 893–908, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. B. Matos, L. P. Pereira, S. M. L. Agostinho, O. E. Barcia, G. G. O. Cordeiro, and E. D'Elia, “Effect of cysteine on the anodic dissolution of copper in sulfuric acid medium,” Journal of Electroanalytical Chemistry, vol. 570, no. 1, pp. 91–94, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Li, L. Ni, C. Sun, and L. Wang, “Influence of organic matter on orthophosphate corrosion inhibition for copper pipe in soft water,” Corrosion Science, vol. 46, no. 1, pp. 137–145, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Dafali, B. Hammouti, R. Mokhlisse, and S. Kertit, “Substituted uracils as corrosion inhibitors for copper in 3% NaCl solution,” Corrosion Science, vol. 45, no. 8, pp. 1619–1630, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Kuriakose, J. T. Kakkassery, V. P. Raphael, and S. K. Shanmughan, “Electrochemical Impedance spectroscopy and potentiodynamic polarization analysis on anticorrosive activity of thiophene-2-carbaldehyde derivative in acid medium,” Indian Journal of Materials Science, vol. 2014, Article ID 124065, 6 pages, 2014. View at Publisher · View at Google Scholar
  11. Zarrouk, B. Hammouti, H. Zarrok, M. Bouachrine, K. F. Khaled, and S. S. Al-Deyab, “Corrosion inhibition of copper in nitric acid solutions using a new triazole derivative,” International Journal of Electrochemical Science, vol. 7, no. 1, pp. 89–105, 2012. View at Google Scholar · View at Scopus
  12. I. El Ouali, B. Hammouti, A. Aouniti, M. Benabdellah, and S. Kertit, “Electrochemical behaviour of N,S-containing corrosion inhibitor for C38 Steel in molar HCL,” Der Pharma Chemica, vol. 3, no. 5, pp. 294–300, 2011. View at Google Scholar · View at Scopus
  13. A. Zarrouk, A. Dafali, B. Hammouti, H. Zarrok, S. Boukhris, and M. Zertoubi, “Synthesis, characterization and comparative study of functionalized quinoxaline derivatives towards corrosion of copper in nitric acid medium,” International Journal of Electrochemical Science, vol. 5, no. 1, pp. 46–55, 2010. View at Google Scholar · View at Scopus
  14. L. Li, Q. Qu, W. Bai et al., “Sodium diethyldithiocarbamate as a corrosion inhibitor of cold rolled steel in 0.5 M hydrochloric acid solution,” Corrosion Science, vol. 59, pp. 249–257, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. H.-L. Wang, H.-B. Fan, and J.-S. Zheng, “Corrosion inhibition of mild steel in hydrochloric acid solution by a mercapto-triazole compound,” Materials Chemistry and Physics, vol. 77, no. 3, pp. 655–661, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Lowmunkhong, D. Ungthararak, and P. Sutthivaiyakit, “Tryptamine as a corrosion inhibitor of mild steel in hydrochloric acid solution,” Corrosion Science, vol. 52, no. 1, pp. 30–36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Soltani, M. Behpour, S. M. Ghoreishi, and H. Naeimi, “Corrosion inhibition of mild steel in hydrochloric acid solution by some double Schiff bases,” Corrosion Science, vol. 52, no. 4, pp. 1351–1361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. S. Abd El Rehim, M. A. M. Ibrahim, and K. F. Khalid, “The inhibition of 4-(2′-amino-5′methylphenylazo) antipyrine on corrosion of mild steel in HCl solution,” Materials Chemistry and Physics, vol. 70, no. 3, pp. 268–273, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Raman and P. Labine, Reviews on Corrosion Inhibitor Science and Technology, NACE, Houston, Tex, USA, 1986.
  20. H. Ashassi-Sorkhabi, B. Shaabani, and D. Seifzadeh, “Effect of some pyrimidinic Shciff bases on the corrosion of mild steel in hydrochloric acid solution,” Electrochimica Acta, vol. 50, no. 16-17, pp. 3446–3452, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. S. S. Mahmoud, “Corrosion inhibition of iron by amphoteric surfactants in hydrochloric acid solutions,” Journal of Materials Science, vol. 42, no. 3, pp. 989–997, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. El Achouri, S. Kertit, H. M. Gouttaya et al., “Corrosion inhibition of iron in 1 M HCl by some gemini surfactants in the series of alkanediyl-α,ω-bis-(dimethyl tetradecyl ammonium bromide),” Progress in Organic Coatings, vol. 43, no. 4, pp. 267–273, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Ramesh and S. Rajeswari, “Corrosion inhibition of mild steel in neutral aqueous solution by new triazole derivatives,” Electrochimica Acta, vol. 49, no. 5, pp. 811–820, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. S. K. Shukla, M. A. Quraishi, and R. Prakash, “A self-doped conducting polymer ‘polyanthranilic acid’: an efficient corrosion inhibitor for mild steel in acidic solution,” Corrosion Science, vol. 50, no. 10, pp. 2867–2872, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Cano, J. L. Polo, A. L. A. Iglesia, and J. M. Bastidas, “A study on the adsorption of benzotriazole on copper in hydrochloric acid using the inflection point of the isotherm,” Adsorption, vol. 10, no. 3, pp. 219–225, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Li, S. Deng, H. Fu, and T. Li, “Adsorption and inhibition effect of 6-benzylaminopurine on cold rolled steel in 1.0 M HCl,” Electrochimica Acta, vol. 54, no. 16, pp. 4089–4098, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Pourbaix, Atlas of Elecrochemical Equilibria in Aqueous Solutions, NACE, Houston, Tex, USA, 1975.
  28. H. E. Johnson and J. Leja, “On the potential/pH diagrams of the Cu–NH3–H2O and Zn–NH3–H2O systems technical notes,” Journal of Electrochemical Society, vol. 112, no. 6, pp. 638–641, 1965. View at Google Scholar
  29. W. H. Smyrl, J. Bockris, B. E. Conway, E. Yeager, and R. E. White, Comprehensive Treatise of Electrochemistry, vol. 4, Plenum Press, New York, NY, USA, 1981.
  30. V. S. Sastri and J. R. Perumareddi, “Molecular orbital theoretical studies of some organic corrosion inhibitors,” Corrosion, vol. 53, no. 8, pp. 617–622, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. W. H. Ailor, Handbook on Corrosion Testing and Evaluation, John Wiley & Sons, New York, NY, USA, 1971.
  32. R. M. Issa, M. K. Awad, and F. M. Atlam, “Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils,” Applied Surface Science, vol. 255, no. 5, pp. 2433–2441, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. R. G. Pearson, “Absolute electronegativity and hardness: application to inorganic chemistry,” Inorganic Chemistry, vol. 27, no. 4, pp. 734–740, 1988. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Xia, M. Qiu, L. Yu, F. Liu, and H. Zhao, “Molecular dynamics and density functional theory study on relationship between structure of imidazoline derivatives and inhibition performance,” Corrosion Science, vol. 50, no. 7, pp. 2021–2029, 2008. View at Publisher · View at Google Scholar · View at Scopus