Table of Contents
International Journal of Molecular Imaging
Volume 2012 (2012), Article ID 230942, 10 pages
http://dx.doi.org/10.1155/2012/230942
Research Article

Concurrent Dual Contrast for Cellular Magnetic Resonance Imaging Using Gadolinium Oxide and Iron Oxide Nanoparticles

1Physiology and Experimental Medicine, The Research Institute, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
2Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada

Received 12 March 2012; Accepted 15 June 2012

Academic Editor: Domenico Rubello

Copyright © 2012 Yasir Loai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. L. Kraitchman, A. W. Heldman, E. Atalar et al., “In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction,” Circulation, vol. 107, no. 18, pp. 2290–2293, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. L. M. Bernas, P. J. Foster, and B. K. Rutt, “Imaging iron-loaded mouse glioma tumors with bSSFP at 3 T,” Magnetic Resonance in Medicine, vol. 64, no. 1, pp. 23–31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Shen, X. M. Zhong, X. H. Duan et al., “Magnetic resonance imaging of mesenchymal stem cells labeled with dual (MR and Fluorescence) agents in rat spinal cord injury,” Academic Radiology, vol. 16, no. 9, pp. 1142–1154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. K. J. Saldanha, R. P. Doan, K. M. Ainslie, T. A. Desai, and S. Majumdar, “Micrometer-sized iron oxide particle labeling of mesenchymal stem cells for magnetic resonance imaging-based monitoring of cartilage tissue engineering,” Magnetic Resonance Imaging, vol. 29, no. 1, pp. 40–49, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. T. C. Yeh, W. Zhang, S. T. Ildstad, and C. Ho, “Intracellular labeling of T-cells with superparamagnetic contrast agents,” Magnetic Resonance in Medicine, vol. 30, no. 5, pp. 617–625, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Hoehn, E. Küstermann, J. Blunk et al., “Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 25, pp. 16267–16272, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. I. J. M. de Vries, W. J. Lesterhuis, J. O. Barentsz et al., “Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy,” Nature Biotechnology, vol. 23, no. 11, pp. 1407–1413, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Li Calzi, D. L. Kent, K. H. Chang et al., “Labeling of stem cells with monocrystalline iron oxide for tracking and localization by magnetic resonance imaging,” Microvascular Research, vol. 78, no. 1, pp. 132–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Lewin, N. Carlesso, C. H. Tung et al., “Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells,” Nature Biotechnology, vol. 18, no. 4, pp. 410–414, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. F. L. Giesel, M. Stroick, M. Griebe et al., “Gadofluorine M uptake in stem cells as a new magnetic resonance imaging tracking method: an in vitro and in vivo study,” Investigative Radiology, vol. 41, no. 12, pp. 868–873, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. G. Crich, L. Biancone, V. Cantaluppi et al., “Improved route for the visualization of stem cells labeled with a Gd-/Eu-chelate as dual (MRI and Fluorescence) agent,” Magnetic Resonance in Medicine, vol. 51, no. 5, pp. 938–944, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Faucher, A. A. Guay-Begin, J. Lagueux, M. F. Cote, E. Petitclerc, and M. A. Fortin, “Ultra-small gadolinium oxide nanoparticles to image brain cancer cells in vivo with MRI,” Contrast Media & Molecular Imaging, vol. 6, pp. 209–218, 2011. View at Google Scholar
  13. A. A. Gilad, P. Walczak, M. T. McMahon et al., “MR tracking of transplanted cells with “positive contrast” using manganese oxide nanoparticles,” Magnetic Resonance in Medicine, vol. 60, no. 1, pp. 1–7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. A. Gilad, H. W. M. Van Laarhoven, M. T. Mcmahon et al., “Feasibility of concurrent dual contrast enhancement using CEST contrast agents and superparamagnetic iron oxide particles,” Magnetic Resonance in Medicine, vol. 61, no. 4, pp. 970–974, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. T. McMahon, A. A. Gilad, M. A. DeLiso, S. M. Cromer Berman, J. W. M. Bulte, and P. C. M. Van Zijl, “New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI,” Magnetic Resonance in Medicine, vol. 60, no. 4, pp. 803–812, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Tagami, W. D. Foltz, M. J. Ernsting et al., “MRI monitoring of intratumoral drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome,” Biomaterials, vol. 32, no. 27, pp. 6570–6578, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. C. S. Poon and R. M. Henkelman, “Practical T2 quantitation for clinical applications.,” Journal of Magnetic Resonance Imaging, vol. 2, no. 5, pp. 541–553, 1992. View at Google Scholar · View at Scopus
  18. Y. Tang, K. Shah, S. M. Messerli, E. Snyder, X. Breakefield, and R. Weissleder, “In vivo tracking of neural progenitor cell migration to glioblastomas,” Human Gene Therapy, vol. 14, no. 13, pp. 1247–1254, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. K. M. Ward, A. H. Aletras, and R. S. Balaban, “A new class of contrast agents for MRI based on proton chemical exchange dependent Saturation transfer (CEST),” Journal of Magnetic Resonance, vol. 143, no. 1, pp. 79–87, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Terreno, D. D. Castelli, L. Milone et al., “First ex-vivo MRI co-localization of two LIPOCEST agents,” Contrast Media and Molecular Imaging, vol. 3, no. 1, pp. 38–43, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. E. Merbach and E. Toth, The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, John Wiley & Sons, Chichester, UK, 2001.
  22. H. E. Daldrup-Link, M. Rudelius, R. A. J. Oostendorp et al., “Targeting of hematopoietic progenitor cells with MR contrast agents,” Radiology, vol. 228, no. 3, pp. 760–767, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. J. K. Hsiao, M. F. Tai, H. H. Chu et al., “Magnetic nanoparticle labeling of mesenchymal stem cells without transfection agent: cellular behavior and capability of detection with clinical 1.5 T magnetic resonance at the single cell level,” Magnetic Resonance in Medicine, vol. 58, no. 4, pp. 717–724, 2007. View at Publisher · View at Google Scholar · View at Scopus