Table of Contents
International Journal of Molecular Imaging
Volume 2012 (2012), Article ID 253475, 7 pages
http://dx.doi.org/10.1155/2012/253475
Clinical Study

Comparative Analysis between SPECT Myocardial Perfusion Imaging and CT Coronary Angiography for Diagnosis of Coronary Artery Disease

1Department of Nuclear Medicine, Tianjin Medical University, Cardiovascular Clinical Institute and TEDA International Cardiovascular Hospital, Tianjin 300457, China
2Department of Radiology, Tianjin Medical University, Cardiovascular Clinical Institute and TEDA International Cardiovascular Hospital, Tianjin 300457, China

Received 31 March 2012; Revised 5 June 2012; Accepted 5 June 2012

Academic Editor: Domenico Rubello

Copyright © 2012 Jian-ming Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. R. Underwood, C. Anagnostopoulos, M. Cerqueira et al., “Myocardial perfusion scintigraphy: the evidence—a consensus conference organised by the British Cardiac Society, the British Nuclear Cardiology Society and the British Nuclear Medicine Society, endorsed by the Royal College of Physicians of London and the Royal College of Radiologists,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 31, no. 2, pp. 261–291, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Baumüller, S. Leschka, L. Desbiolles et al., “Dual-source versus 64-section CT coronary angiography at lower heart rates: comparison of accuracy and radiation dose,” Radiology, vol. 253, no. 1, pp. 56–64, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. D. Cerqueira, N. J. Weissman, V. Dilsizian et al., “Standardized myocardial sementation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association,” Circulation, vol. 105, no. 4, pp. 539–542, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. W. G. Austen, J. E. Edwards, R. L. Frye et al., “A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association,” Circulation, vol. 51, no. 4, pp. 5–40, 1975. View at Google Scholar · View at Scopus
  5. O. Gaemperli, T. Schepis, I. Valenta et al., “Functionally relevant coronary artery disease: comparison of 64-section CT angiography with myocardial perfusion SPECT,” Radiology, vol. 248, no. 2, pp. 414–423, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Sato, M. Hiroe, M. Tamura et al., “Quantitative measures of coronary stenosis severity by 64-slice CT angiography and relation to physiologic significance of perfusion in nonobese patients: comparison with stress myocardial perfusion imaging,” Journal of Nuclear Medicine, vol. 49, no. 4, pp. 564–572, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Cyrus, R. J. Gropler, and P. K. Woodard, “Coronary CT angiography (CCTA) and advances in CT plaque imaging,” Journal of Nuclear Cardiology, vol. 16, no. 3, pp. 466–473, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Yerramasu, A. Lahiri, and T. Chua, “Comparative roles of cardiac CT and myocardial perfusion scintigraphy in the evaluation of patients with coronary artery disease: competitive or complementary,” Journal of Nuclear Cardiology, vol. 17, no. 5, pp. 761–770, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. L. P. Salm, J. J. Bax, J. W. Jukema et al., “Hemodynamic evaluation of saphenous vein coronary artery bypass grafts: relative merits of Doppler flow velocity and SPECT perfusion imaging,” Journal of Nuclear Cardiology, vol. 12, no. 5, pp. 545–552, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Berger, K. J. Botman, P. A. MacCarthy et al., “Long-term clinical outcome after fractional flow reserve-guided percutaneous coronary intervention in patients with multivessel disease,” Journal of the American College of Cardiology, vol. 46, no. 3, pp. 438–442, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. D. Schuijf, W. Wijns, J. W. Jukema et al., “Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging,” Journal of the American College of Cardiology, vol. 48, no. 12, pp. 2508–2514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Hausleiter, T. Meyer, M. Hadamitzky et al., “Non-invasive coronary computed tomographic angiography for patients with suspected coronary artery disease: the Coronary Angiography by Computed Tomography with the Use of a Submillimeter resolution (CACTUS) trial,” European Heart Journal, vol. 28, no. 24, pp. 3034–3041, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. L. E. Vicario, L. Cirillo, G. Storto et al., “Influence of risk factors on coronary flow reserve in patients with 1-vessel coronary artery disease,” Journal of Nuclear Medicine, vol. 46, no. 9, pp. 1438–1443, 2005. View at Google Scholar · View at Scopus
  14. P. Soman, A. Parsons, N. Lahiri, and A. Lahiri, “The prognostic value of a normal Tc-99m sestamibi SPECT study in suspected coronary artery disease,” Journal of Nuclear Cardiology, vol. 6, no. 3, pp. 252–256, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Elhendy, A. Schinkel, J. J. Bax, R. T. van Domburg, and D. Poldermans, “Long-term prognosis after a normal exercise stress Tc-99m sestamibi SPECT study,” Journal of Nuclear Cardiology, vol. 10, no. 3, pp. 261–266, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. van Werkhoven, J. D. Schuijf, O. Gaemperli et al., “Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease,” Journal of the American College of Cardiology, vol. 53, no. 7, pp. 623–632, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. M. van Werkhoven, J. J. Bax, G. Nucifora et al., “The value of multi-slice-computed tomography coronary angiography for risk stratification,” Journal of Nuclear Cardiology, vol. 16, no. 6, pp. 970–980, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. F. J. Klocke, M. G. Baird, B. H. Lorell et al., “ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary—a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging),” Circulation, vol. 108, no. 11, pp. 1404–1418, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. R. C. Hendel, M. R. Patel, C. M. Kramer et al., “ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriate-ness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology,” Journal of the American College of Cardiology, vol. 48, no. 7, pp. 1475–1497, 2006. View at Publisher · View at Google Scholar
  20. S. C. Smith Jr., J. T. Dove, A. K. Jacobs et al., “ACC/AHA guideline of percutaneous coronary interventions (revision of the 1993 PTCA guidelines): executive summary—a report of the American College of Cardiology/American Heart Association task force on practice guidelines(committee to revise the 1993 guidelines for percutaneous transluminal coronary angioplasty),” Journal of the American College of Cardiology, vol. 37, pp. 2215–2239, 2001. View at Google Scholar
  21. R. Hachamovitch, S. W. Hayes, J. D. Friedman, I. Cohen, and D. S. Berman, “Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography,” Circulation, vol. 107, no. 23, pp. 2900–2906, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. D. S. Berman, R. Hachamovitch, L. J. Shaw et al., “Roles of nuclear cardiology, cardiac computed tomography, and cardiac magnetic resonance: noninvasive risk stratification and a conceptual framework for the selection of noninvasive imaging tests in patients with known or suspected coronary artery disease,” Journal of Nuclear Medicine, vol. 47, no. 7, pp. 1107–1118, 2006. View at Google Scholar · View at Scopus
  23. W. H. Aarnoudse, K. J. B. M. Botman, and N. H. J. Pijls, “False-negative myocardial scintigraphy in balanced three-vessel disease, revealed by coronary pressure measurement,” International Journal of Cardiovascular Interventions, vol. 5, no. 2, pp. 67–71, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. J. R. Ghadri, A. P. Pazhenkottil, R. N. Nkoulou et al., “Very high coronary calcium score unmasks obstructive coronary artery disease in patients with normal SPECT MPI,” Heart, vol. 97, no. 12, pp. 998–1003, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Choudhary, V. Shin, S. Punjani, N. Ritter, S. C. Sharma, and W. C. Wu, “The role of calcium score and CT angiography in the medical management of patients with normal myocardial perfusion imaging,” Journal of Nuclear Cardiology, vol. 17, no. 1, pp. 45–51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Saghari, M. Assadi, M. Eftekhari et al., “Frequency and severity of myocardial perfusion abnormalities using Tc-99m MIBI SPECT in cardiac syndrome X,” BMC Nuclear Medicine, vol. 6, article 1, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. J. C. Kaski, G. Aldama, and J. Cosín-Sales, “Cardiac syndrome X: diagnosis, pathogenesis and management,” American Journal of Cardiovascular Drugs, vol. 4, no. 3, pp. 179–194, 2004. View at Publisher · View at Google Scholar · View at Scopus