Table of Contents
International Journal of Molecular Imaging
Volume 2012, Article ID 324686, 9 pages
http://dx.doi.org/10.1155/2012/324686
Review Article

PET Imaging in Recurrent Medullary Thyroid Carcinoma

1Institute of Nuclear Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy
2Department of Nuclear Medicine and PET-CT Centre, Oncology Institute of Southern Switzerland, Street Ospedale 12, 6500 Bellinzona, Switzerland

Received 23 April 2012; Accepted 21 May 2012

Academic Editor: Francesco S. Celi

Copyright © 2012 Giorgio Treglia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. C. Pitt and J. F. Moley, “Medullary, anaplastic, and metastatic cancers of the thyroid,” Seminars in Oncology, vol. 37, no. 6, pp. 567–579, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. American Thyroid Association Guidelines Task Force, R. T. Kloos, C. Eng et al., “Medullary thyroid cancer: management guidelines of the American Thyroid Association,” Thyroid, vol. 19, no. 6, pp. 565–612, 2009. View at Google Scholar · View at Scopus
  3. V. Rufini, G. Treglia, G. Perotti, L. Leccisotti, M. L. Calcagni, and D. Rubello, “Role of PET in medullary thyroid carcinoma,” Minerva Endocrinologica, vol. 33, no. 2, pp. 67–73, 2008. View at Google Scholar · View at Scopus
  4. V. Rufini, P. Castaldi, G. Treglia et al., “Nuclear medicine procedures in the diagnosis and therapy of medullary thyroid carcinoma,” Biomedicine and Pharmacotherapy, vol. 62, no. 3, pp. 139–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Treglia, P. Castaldi, M. F. Villani et al., “Comparison of 18F-DOPA, 18F-FDG and 68Ga-somatostatin analogue PET/CT in patients with recurrent medullary thyroid carcinoma,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, pp. 569–580, 2012. View at Google Scholar
  6. S. Kauhanen, C. Schalin-Jäntti, M. Seppänen et al., “Complementary roles of 18F-DOPA PET/CT and 18F-FDG PET/CT in medullary thyroid cancer,” Journal of Nuclear Medicine, vol. 52, pp. 1855–1863, 2011. View at Publisher · View at Google Scholar
  7. E. Ozkan, C. Soydal, O. N. Kucuk, E. Ibis, and G. Erbay, “Impact of 18F-FDG PET/CT for detecting recurrence of medullary thyroid carcinoma,” Nuclear Medicine Communications, vol. 32, pp. 1162–1168, 2011. View at Publisher · View at Google Scholar
  8. P. Gómez-Camarero, A. Ortiz-de Tena, I. Borrego-Dorado et al., “Evaluation of efficacy and clinical impact of 18F-FDG-PET in the diagnosis of recurrent medullary thyroid cancer with increased calcitonin and negative imaging test,” Revista Española de Medicina Nuclear. In press.
  9. I. Pałyga, A. Kowalska, D. Gąsior-Perczak et al., “The role of PET-CT scan with somatostatin analogue labelled with gallium-68 (68Ga-DOTA-TATE PET-CT) in diagnosing patients with disseminated medullary thyroid carcinoma (MTC),” Endokrynologia Polska, vol. 61, no. 5, pp. 507–511, 2010. View at Google Scholar · View at Scopus
  10. H. W. Jang, J. Y. Choi, J. I. Lee et al., “Localization of medullary thyroid carcinoma after surgery using 11C-methionine pet/ct: comparison with 18F-FDG PET/CT,” Endocrine Journal, vol. 57, no. 12, pp. 1045–1054, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Luster, W. Karges, K. Zeich et al., “Clinical value of 18-fluorine-fluorodihydroxyphenylalanine positron emission tomography/computed tomography in the follow-up of medullary thyroid carcinoma,” Thyroid, vol. 20, no. 5, pp. 527–533, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Skoura, P. Rondogianni, M. Alevizaki et al., “Role of [18F]FDG-PET/CT in the detection of occult recurrent medullary thyroid cancer,” Nuclear Medicine Communications, vol. 31, no. 6, pp. 567–575, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. C. Marzola, M. R. Pelizzo, M. Ferdeghini et al., “Dual PET/CT with 18F-DOPA and 18F-FDG in metastatic medullary thyroid carcinoma and rapidly increasing calcitonin levels: comparison with conventional imaging,” European Journal of Surgical Oncology, vol. 36, no. 4, pp. 414–421, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. T. V. Bogsrud, D. Karantanis, M. A. Nathan et al., “The prognostic value of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography in patients with suspected residual or recurrent medullary thyroid carcinoma,” Molecular Imaging and Biology, vol. 12, no. 5, pp. 547–553, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. B. G. Conry, N. D. Papathanasiou, V. Prakash et al., “Comparison of 68Ga-DOTATATE and 18F- fluorodeoxyglucose PET/CT in the detection of recurrent medullary thyroid carcinoma,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, no. 1, pp. 49–57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Beheshti, S. Pöcher, R. Vali et al., “The value of 18F-DOPA PET-CT in patients with medullary thyroid carcinoma: comparison with 18F-FDG PET-CT,” European Radiology, vol. 19, no. 6, pp. 1425–1434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Faggiano, F. Grimaldi, L. Pezzullo et al., “Secretive and proliferative tumor profile helps to select the best imaging technique to identify postoperative persistent or relapsing medullary thyroid cancer,” Endocrine-Related Cancer, vol. 16, no. 1, pp. 225–231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. K. P. Koopmans, J. W. B. De Groot, J. T. M. Plukker et al., “18F-dihydroxyphenylalanine PET in patients with biochemical evidence of medullary thyroid cancer: relation to tumor differentiation,” Journal of Nuclear Medicine, vol. 49, no. 4, pp. 524–531, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Rubello, L. Rampin, C. Nanni et al., “The role of 18F-FDG PET/CT in detecting metastatic deposits of recurrent medullary thyroid carcinoma: a prospective study,” European Journal of Surgical Oncology, vol. 34, no. 5, pp. 581–586, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Oudoux, P. Y. Salaun, C. Bournaud et al., “Sensitivity and prognostic value of positron emission tomography with F-18-fluorodeoxyglucose and sensitivity of immunoscintigraphy in patients with medullary thyroid carcinoma treated with anticarcinoembryonic antigen-targeted radioimmunotherapy,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 12, pp. 4590–4597, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. L. Giraudet, D. Vanel, S. Leboulleux et al., “Imaging medullary thyroid carcinoma with persistent elevated calcitonin levels,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 11, pp. 4185–4190, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Czepczyński, M. G. Parisella, J. Kosowicz et al., “Somatostatin receptor scintigraphy using 99mTc-EDDA/HYNIC-TOC in patients with medullary thyroid carcinoma,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 10, pp. 1635–1645, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Beuthien-Baumann, A. Strumpf, J. Zessin, J. Bredow, and J. Kotzerke, “Diagnostic impact of PET with 18F-FDG, 18F-DOPA and 3-O-methyl-6-[18F]fluoro-DOPA in recurrent or metastatic medullary thyroid carcinoma,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 10, pp. 1604–1609, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. S. C. Ong, H. Schöder, S. G. Patel et al., “Diagnostic accuracy of 18F-FDG PET in restaging patients with medullary thyroid carcinoma and elevated calcitonin levels,” Journal of Nuclear Medicine, vol. 48, no. 4, pp. 501–507, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Iagaru, R. Masamed, P. A. Singer, and P. S. Conti, “Detection of occult medullary thyroid cancer recurrence with 2-Deoxy-2-[F-18]fluoro-d-glucose-PET and PET/CT,” Molecular Imaging and Biology, vol. 9, no. 2, pp. 72–77, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Gotthardt, M. P. Béhé, D. Beuter et al., “Improved tumour detection by gastrin receptor scintigraphy in patients with metastasised medullary thyroid carcinoma,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 33, no. 11, pp. 1273–1279, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. J. W. B. de Groot, T. P. Links, P. L. Jager, T. Kahraman, and J. T. M. Plukker, “Impact of 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in patients with biochemical evidence of recurrent or residual medullary thyroid cancer,” Annals of Surgical Oncology, vol. 11, no. 8, pp. 786–794, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Szakáll Jr., O. Ésik, G. Bajzik et al., “18F-FDG PET detection of lymph node metastases in medullary thyroid carcinoma,” Journal of Nuclear Medicine, vol. 43, no. 1, pp. 66–71, 2002. View at Google Scholar · View at Scopus
  29. M. Diehl, J. H. Risse, K. Brandt-Mainz et al., “Fluorine-18 fluorodeoxyglucose positron emission tomography in medullary thyroid cancer: results of a multicentre study,” European Journal of Nuclear Medicine, vol. 28, no. 11, pp. 1671–1676, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Hoegerle, C. Altehoefer, N. Ghanem, I. Brink, E. Moser, and E. Nitzsche, “18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels,” European Journal of Nuclear Medicine, vol. 28, no. 1, pp. 64–71, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Brandt-Mainz, S. P. Müller, R. Görges, B. Saller, and A. Bockisch, “The value of fluorine-18 fluorodeoxyglucose PET in patients with medullary thyroid cancer,” European Journal of Nuclear Medicine, vol. 27, no. 5, pp. 490–496, 2000. View at Google Scholar · View at Scopus
  32. S. Adams, R. Baum, T. Rink, P. M. Schumm-Dräger, K. H. Usadel, and G. Hör, “Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours,” European Journal of Nuclear Medicine, vol. 25, no. 1, pp. 79–83, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. T. J. Musholt, P. B. Musholt, F. Dehdashti, and J. F. Moley, “Evaluation of fluorodeoxyglucose-positron emission tomographic scanning and its association with glucose transporter expression in medullary thyroid carcinoma and pheochromocytoma: a clinical and molecular study,” Surgery, vol. 122, no. 6, pp. 1049–1061, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Adams, R. P. Baum, A. Hertel, P. M. Schumm-Dräger, K. H. Usadel, and G. Hör, “Metabolic (PET) and receptor (SPET) imaging of well- and less well- differentiated tumours: comparison with the expression of the Ki-67 antigen,” Nuclear Medicine Communications, vol. 19, no. 7, pp. 641–647, 1998. View at Google Scholar · View at Scopus
  35. R. Czepczyński, J. Kosowicz, K. Ziemnicka, R. Mikołajczak, M. Gryczyńska, and J. Sowiński, “The role of scintigraphy with the use of 99mTc-HYNIC-TOC in the diagnosis of medullary thyroid carcinoma,” Endokrynologia Polska, vol. 57, no. 4, pp. 431–435, 2006. View at Google Scholar · View at Scopus
  36. M. Gotthardt, A. Battmann, H. Höffken et al., “18F-FDG PET, somatostatin receptor scintigraphy, and CT in metastatic medullary thyroid carcinoma: a clinical study and an analysis of the literature,” Nuclear Medicine Communications, vol. 25, no. 5, pp. 439–443, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Boér, S. Szakáll Jr., I. Klein et al., “FDG PET imaging in hereditary thyroid cancer,” European Journal of Surgical Oncology, vol. 29, no. 10, pp. 922–928, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Szakáll Jr., G. Bajzik, I. Repa et al., “FDG PET scan of metastases in recurrent medullary carcinoma of the thyroid gland,” Orvosi Hetilap, vol. 143, no. 21, pp. 1280–1283, 2002. View at Google Scholar · View at Scopus
  39. P. S. Conti, J. M. Durski, F. Bacqai, S. T. Grafton, and P. A. Singer, “Imaging of locally recurrent and metastatic thyroid cancer with positron emission tomography,” Thyroid, vol. 9, no. 8, pp. 797–804, 1999. View at Google Scholar · View at Scopus
  40. G. Treglia, M. F. Villani, A. Giordano, and V. Rufini, “Detection rate of recurrent medullary thyroid carcinoma using fluorine-18 fluorodeoxyglucose positron emission tomography: a meta-analysis,” Endocrine. In press. View at Publisher · View at Google Scholar
  41. S. Kauhanen, M. Seppaänen, J. Ovaska et al., “The clinical value of [18F]fluorodihydroxyphenylalanine positron emission tomography in primary diagnosis, staging, and restaging of neuroendocrine tumors,” Endocrine-Related Cancer, vol. 16, no. 1, pp. 255–265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Treglia, P. Castaldi, G. Rindi, A. Giordano, and V. Rufini, “Diagnostic performance of Gallium-68 somatostatin receptor PET and PET/CT in patients with thoracic and gastroenteropancreatic neuroendocrine tumours: a meta-analysis,” Endocrine. In press. View at Publisher · View at Google Scholar