Table of Contents
International Journal of Molecular Imaging
Volume 2012, Article ID 501579, 10 pages
http://dx.doi.org/10.1155/2012/501579
Review Article

Engineering Molecular Beacons for Intracellular Imaging

1Center for Research at Bio/Nano Interface and Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
2State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemical Biology, Key Laboratory of Analytical Science, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

Received 7 August 2012; Accepted 21 September 2012

Academic Editor: Xiaoyuan Chen

Copyright © 2012 Cuichen Sam Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. G. Spiller, C. D. Wood, D. A. Rand, and M. R. H. White, “Measurement of single-cell dynamics,” Nature, vol. 465, no. 7299, pp. 736–745, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Tan, K. Wang, and T. J. Drake, “Molecular beacons,” Current Opinion in Chemical Biology, vol. 8, no. 5, pp. 547–553, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Tyagi and F. R. Kramer, “Molecular beacons: probes that fluoresce upon hybridization,” Nature Biotechnology, vol. 14, no. 3, pp. 303–308, 1996. View at Google Scholar · View at Scopus
  4. K. Wang, Z. Tang, C. J. Yang et al., “Molecular engineering of DNA: molecular beacons,” Angewandte Chemie, vol. 48, no. 5, pp. 856–870, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Tyagi, D. P. Bratu, and F. R. Kramer, “Multicolor molecular beacons for allele discrimination,” Nature Biotechnology, vol. 16, no. 1, pp. 49–53, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Tyagi, S. A. E. Marras, and F. R. Kramer, “Wavelength-shifting molecular beacons,” Nature Biotechnology, vol. 18, no. 11, pp. 1191–1196, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Zhang, T. Beck, and W. Tan, “Design of a molecular beacon DNA probe with two fluorophores,” Angewandte Chemie, vol. 40, no. 2, pp. 402–405, 2001. View at Publisher · View at Google Scholar
  8. X. Fang, X. Liu, S. Schuster, and W. Tan, “Designing a novel molecular beacon for surface-immobilized DNA hybridization studies,” Journal of the American Chemical Society, vol. 121, no. 12, pp. 2921–2922, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Li, W. Tan, K. Wang et al., “Ultrasensitive optical DNA biosensor based on surface immobilization of molecular beacon by a bridge structure,” Analytical Sciences, vol. 17, no. 10, pp. 1149–1153, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Fang, J. J. Li, and W. Tan, “Using molecular beacons to probe molecular interactions between lactate dehydrogenase and single-stranded DNA,” Analytical Chemistry, vol. 72, no. 14, pp. 3280–3285, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. J. J. Li, X. Fang, S. M. Schuster, and W. Tan, “Molecular beacons: a novel approach to detect protein-DNA interactions,” Angewandte Chemie, vol. 39, no. 6, pp. 1049–1052, 2000. View at Publisher · View at Google Scholar
  12. W. Tan, X. Fang, J. Li, and X. Liu, “Molecular beacons: a novel DNA probe for nucleic acid and protein studies,” Chemistry, vol. 6, no. 7, pp. 1107–1111, 2000. View at Google Scholar · View at Scopus
  13. C. J. Yang, M. Pinto, K. Schanze, and W. Tan, “Direct synthesis of an oligonucleotide-poly-(phenylene ethynylene) conjugate with a precise one-to-one molecular ratio,” Angewandte Chemie, vol. 44, no. 17, pp. 2572–2576, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Wang, C. J. Yang, C. D. Medley, S. A. Benner, and W. Tan, “Locked nucleic acid molecular beacons,” Journal of the American Chemical Society, vol. 127, no. 45, pp. 15664–15665, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Kim, C. J. Yang, and W. Tan, “Superior structure stability and selectivity of hairpin nucleic acid probes with an L-DNA stem,” Nucleic Acids Research, vol. 35, no. 21, pp. 7279–7287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. C. J. Yang, H. Lin, and W. Tan, “Molecular assembly of superquenchers in signaling molecular interactions,” Journal of the American Chemical Society, vol. 127, no. 37, pp. 12772–12773, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. C. J. Yang, K. Martinez, H. Lin, and W. Tan, “Hybrid molecular probe for nucleic acid analysis in biological samples,” Journal of the American Chemical Society, vol. 128, no. 31, pp. 9986–9987, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Conjugated polymers as solid-state laser materials,” Synthetic Metals, vol. 91, no. 1–3, pp. 35–40, 1997. View at Google Scholar · View at Scopus
  19. S. A. Kushon, K. D. Ley, K. Bradford, R. M. Jones, D. McBranch, and D. Whitten, “Detection of DNA hybridization via fluorescent polymer superquenching,” Langmuir, vol. 18, no. 20, pp. 7245–7249, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Lu, R. M. Jones, D. McBranch, and D. Whitten, “Surface-enhanced superquenching of cyanine dyes as J-aggregates on laponite clay nanoparticles,” Langmuir, vol. 18, no. 20, pp. 7706–7713, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. T. M. Swager, “The molecular wire approach to sensory signal amplification,” Accounts of Chemical Research, vol. 31, no. 5, pp. 201–207, 1998. View at Google Scholar · View at Scopus
  22. U. H. F. Bunz, “Poly(aryleneethynylene)s: syntheses, properties, structures, and applications,” Chemical Reviews, vol. 100, no. 4, pp. 1605–1644, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. A. D. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature, vol. 346, no. 6287, pp. 818–822, 1990. View at Publisher · View at Google Scholar · View at Scopus
  24. D. L. Robertson and G. F. Joyce, “Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA,” Nature, vol. 344, no. 6265, pp. 467–468, 1990. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Tuerk and L. Gold, “Systemic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase,” Science, vol. 249, no. 4968, pp. 505–510, 1990. View at Google Scholar · View at Scopus
  26. J. J. Li and W. Tan, “A real-time assay for DNA sticky-end pairing using molecular beacons,” Analytical Biochemistry, vol. 312, no. 2, pp. 251–254, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Wang, Z. Zhu, Y. Song, H. Lin, C. J. Yang, and W. Tan, “Caged molecular beacons: controlling nucleic acid hybridization with light,” Chemical Communications, vol. 47, no. 20, pp. 5708–5710, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Conlon, C. J. Yang, Y. Wu et al., “Pyrene excimer signaling molecular beacons for probing nucleic acids,” Journal of the American Chemical Society, vol. 130, no. 1, pp. 336–342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. C. J. Yang, S. Jockusch, M. Vicens, N. J. Turro, and W. Tan, “Light-switching excimer probes for rapid protein monitoring in complex biological fluids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 48, pp. 17278–17283, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Wu, L. Yan, C. Wang et al., “A general excimer signaling approach for aptamer sensors,” Biosensors and Bioelectronics, vol. 25, no. 10, pp. 2232–2237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. F. M. Winnik, “Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media,” Chemical Reviews, vol. 93, no. 2, pp. 587–614, 1993. View at Google Scholar · View at Scopus
  32. C. J. Yang, L. Wang, Y. Wu et al., “Synthesis and investigation of deoxyribonucleic acid/locked nucleic acid chimeric molecular beacons,” Nucleic Acids Research, vol. 35, no. 12, pp. 4030–4041, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Sheng, Z. Yang, Y. Kim, Y. Wu, W. Tan, and S. A. Benner, “Design of a novel molecular beacon: modification of the stem with artificially genetic alphabet,” Chemical Communications, no. 41, pp. 5128–5130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Mao, H. Xu, Q. Zeng, L. Zeng, and G. Liu, “Molecular beacon-functionalized gold nanoparticles as probes in dry-reagent strip biosensor for DNA analysis,” Chemical Communications, no. 21, pp. 3065–3067, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. H.-Y. Yeh, M. V. Yates, A. Mulchandani, and W. Chen, “Molecular beacon-quantum dot-Au nanoparticle hybrid nanoprobes for visualizing virus replication in living cells,” Chemical Communications, vol. 46, no. 22, pp. 3914–3916, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. T. L. Jennings, J. C. Schlatterer, M. P. Singh, N. L. Greenbaum, and G. F. Strouse, “NSET molecular beacon analysis of hammerhead RNA substrate binding and catalysis,” Nano Letters, vol. 6, no. 7, pp. 1318–1324, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, “Gold nanoparticles in chemical and biological sensing,” Chemical Reviews, vol. 112, no. 5, pp. 2739–2779, 2012. View at Publisher · View at Google Scholar
  38. N. L. Rosi, D. A. Giljohann, C. S. Thaxton, A. K. R. Lytton-Jean, M. S. Han, and C. A. Mirkin, “Oligonucleotide-modified gold nanoparticles for infracellular gene regulation,” Science, vol. 312, no. 5776, pp. 1027–1030, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. D. S. Seferos, D. A. Giljohann, H. D. Hill, A. E. Prigodich, and C. A. Mirkin, “Nano-flares: probes for transfection and mRNA detection in living cells,” Journal of the American Chemical Society, vol. 129, no. 50, pp. 15477–15479, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Zheng, D. S. Seferos, D. A. Giljohann, P. C. Patel, and C. A. Mirkin, “Aptamer nano-flares for molecular detection in living cells,” Nano Letters, vol. 9, no. 9, pp. 3258–3261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. E. R. Goldman, G. P. Anderson, P. T. Tran, H. Mattoussi, P. T. Charles, and J. M. Mauro, “Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays,” Analytical Chemistry, vol. 74, no. 4, pp. 841–847, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. T. J. Drake, C. D. Medley, A. Sen, R. J. Rogers, and W. Tan, “Stochasticity of manganese superoxide dismutase mRNA expression in breast carcinoma cells by molecular beacon imaging,” ChemBioChem, vol. 6, no. 11, pp. 2041–2047, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. C. D. Medley, T. J. Drake, J. M. Tomasini, R. J. Rogers, and W. Tan, “Simultaneous monitoring of the expression of multiple genes inside of single breast carcinoma cells,” Analytical Chemistry, vol. 77, no. 15, pp. 4713–4718, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. C. D. Medley, H. Lin, H. Mullins, R. J. Rogers, and W. Tan, “Multiplexed detection of ions and mRNA expression in single living cells,” Analyst, vol. 132, no. 9, pp. 885–891, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Martinez, C. D. Medley, C. J. Yang, and W. Tan, “Investigation of the hybrid molecular probe for intracellular studies,” Analytical and Bioanalytical Chemistry, vol. 391, no. 3, pp. 983–991, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Wu, C. J. Yang, L. L. Moroz, and W. Tan, “Nucleic acid beacons for long-term real-time intracellular monitoring,” Analytical Chemistry, vol. 80, no. 8, pp. 3025–3028, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. X. Fang, J. J. Li, J. Perlette, W. Tan, and K. Wang, “Molecular beacons: novel fluorescent probes,” Analytical Chemistry, vol. 72, no. 23, 2000. View at Google Scholar · View at Scopus
  48. J. J. Li, R. Geyer, and W. Tan, “Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA.,” Nucleic Acids Research, vol. 28, no. 11, p. E52, 2000. View at Google Scholar · View at Scopus
  49. J. Perlette, J. Li, X. Fang, S. Schuster, J. Lou, and W. Tan, “Novel DNA probes for detection and quantification of protein molecules,” Reviews in Analytical Chemistry, vol. 21, no. 1, pp. 1–14, 2002. View at Google Scholar · View at Scopus
  50. A. Tsourkas and G. Bao, “Shedding light on health and disease using molecular beacons.,” Brief Funct Genomic Proteomic, vol. 1, no. 4, pp. 372–384, 2003. View at Google Scholar · View at Scopus
  51. G. Bao, J. R. Won, and A. Tsourkas, “Fluorescent probes for live-cell RNA detection,” Annual Review of Biomedical Engineering, vol. 11, pp. 25–47, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Tyagi, “Imaging intracellular RNA distribution and dynamics in living cells,” Nature Methods, vol. 6, no. 5, pp. 331–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. P.-J. J. Huang and J. Liu, “Molecular beacon lighting up on graphene oxide,” Analytical Chemistry, vol. 84, no. 9, pp. 4192–4198, 2012. View at Publisher · View at Google Scholar
  54. J.-J. Liu, X.-R. Song, Y.-W. Wang, G.-N. Chen, and H.-H. Yang, “A graphene oxide (GO)-based molecular beacon for DNA-binding transcription factor detection,” Nanoscale, vol. 4, no. 12, pp. 3655–3659, 2012. View at Publisher · View at Google Scholar