Table of Contents
International Journal of Molecular Imaging
Volume 2012 (2012), Article ID 690468, 6 pages
http://dx.doi.org/10.1155/2012/690468
Review Article

123I-MIBG Scintigraphy as a Powerful Tool to Plan an Implantable Cardioverter Defibrillator and to Assess Cardiac Resynchronization Therapy in Heart Failure Patients

Department of Radiological Sciences, Institute of Nuclear Medicine, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy

Received 29 June 2012; Accepted 22 August 2012

Academic Editor: Seigo Kinuya

Copyright © 2012 Antonella Stefanelli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. N. Leimbach, B. G. Wallin, and R. G. Victor, “Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure,” Circulation, vol. 73, no. 5, pp. 913–919, 1986. View at Google Scholar · View at Scopus
  2. P. J. Podrid, T. Fuchs, and R. Candinas, “Role of the sympathetic nervous system in the genesis of ventricular arrhythmia,” Circulation, vol. 82, no. 2, supplement, pp. I-103–I-113, 1990. View at Google Scholar · View at Scopus
  3. A. Flotats, I. Carrió, D. Agostini et al., “Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, no. 9, pp. 1802–1812, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Treglia, E. Cason, A. Gabellini, A. Giordano, and G. Fagioli, “Recent developments in innervation imaging using iodine-123-metaiodobenzylguanidine scintigraphy in Lewy body diseases,” Neurological Sciences, vol. 31, no. 4, pp. 417–422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Yamashina and J. I. Yamazaki, “Neuronal imaging using SPECT,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 6, pp. 939–950, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Giordano, G. Melina, M. L. Calcagni et al., “Selective Cardiac Neuroadrenergic Abnormalities in Hypertensive Patients with Left Ventricular Hypertrophy,” Archives of Medical Research, vol. 38, no. 5, pp. 512–518, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Agostini, H. J. Verberne, M. Hamon, A. F. Jacobson, and A. Manrique, “Cardiac 123I-MIBG scintigraphy in heart failure,” Quarterly Journal of Nuclear Medicine and Molecular Imaging, vol. 52, no. 4, pp. 369–377, 2008. View at Google Scholar · View at Scopus
  8. G. A. Somsen, H. J. Verberne, E. Fleury, and A. Righetti, “Normal values and within-subject variability of cardiac I-123 MIBG scintigraphy in healthy individuals: implications for clinical studies,” Journal of Nuclear Cardiology, vol. 11, no. 2, pp. 126–133, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Merlet, H. Valette, J. L. Dubois-Rande et al., “Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure,” Journal of Nuclear Medicine, vol. 33, no. 4, pp. 471–477, 1992. View at Google Scholar · View at Scopus
  10. D. Agostini, H. J. Verberne, W. Burchert et al., “I-123-mIBG myocardial imaging for assessment of risk for a major cardiac event in heart failure patients: insights from a retrospective European multicenter study,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 35, no. 3, pp. 535–546, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. F. Jacobson, R. Senior, M. D. Cerqueira et al., “Myocardial Iodine-123 Meta-Iodobenzylguanidine Imaging and Cardiac Events in Heart Failure. Results of the Prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) Study,” Journal of the American College of Cardiology, vol. 55, no. 20, pp. 2212–2221, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Kasama, T. Toyama, H. Sumino et al., “Prognostic value of serial cardiac 123I-MIBG imaging in patients with stabilized chronic heart failure and reduced left ventricular ejection fraction,” Journal of Nuclear Medicine, vol. 49, no. 6, pp. 907–914, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Tamaki, T. Yamada, Y. Okuyama et al., “Cardiac Iodine-123 Metaiodobenzylguanidine Imaging Predicts Sudden Cardiac Death Independently of Left Ventricular Ejection Fraction in Patients With Chronic Heart Failure and Left Ventricular Systolic Dysfunction. Results From a Comparative Study With Signal-Averaged Electrocardiogram, Heart Rate Variability, and QT Dispersion,” Journal of the American College of Cardiology, vol. 53, no. 5, pp. 426–435, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. J. Bax, O. Kraft, A. E. Buxton et al., “123 I-mIBG scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing: a prospective multicenter pilot study,” Circulation, vol. 1, no. 2, pp. 131–140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. L. B. Rigden, R. D. Mitrani, H. N. Wellman, L. S. Klein, W. M. Miles, and D. P. Zipes, “Defibrillation shocks over epicardial patches produce sympathetic neural dysfunction in man,” Journal of Cardiovascular Electrophysiology, vol. 7, no. 5, pp. 398–405, 1996. View at Google Scholar · View at Scopus
  16. R. Arora, K. J. Ferrick, T. Nakata et al., “I-123 MIBG imaging and heart rate variability analysis to predict the need for an implantable cardioverter defribillator,” Journal of Nuclear Cardiology, vol. 10, no. 2, pp. 121–131, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Nagahara, T. Nakata, A. Hashimoto et al., “Predicting the need for an implantable cardioverter defibrillator using cardiac metaiodobenzylguanidine activity together with plasma natriuretic peptide concentration or left ventricular function,” Journal of Nuclear Medicine, vol. 49, no. 2, pp. 225–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Koutelou, A. Katsikis, P. Flevari et al., “Predictive value of cardiac autonomic indexes and MIBG washout in ICD recipients with mild to moderate heart failure,” Annals of Nuclear Medicine, vol. 23, no. 7, pp. 677–684, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Nishisato, A. Hashimoto, T. Nakata et al., “Impaired cardiac sympathetic innervation and myocardial perfusion are related to lethal arrhythmia: quantification of cardiac tracers in patients with ICDs,” Journal of Nuclear Medicine, vol. 51, no. 8, pp. 1241–1249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. J. Boogers, C. J. W. Borleffs, M. M. Henneman et al., “Cardiac Sympathetic Denervation Assessed With 123-Iodine Metaiodobenzylguanidine Imaging Predicts Ventricular Arrhythmias in Implantable Cardioverter-Defibrillator Patients,” Journal of the American College of Cardiology, vol. 55, no. 24, pp. 2769–2777, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. P. E. Vardas, A. Auricchio, J.-J. Blanc et al., “Guidelines for cardiac pacing and cardiac resynchronization therapy: the Task Force for Cardiac Pacing and Cardiac Resynchronization Therapy of the European Society of Cardiology. Developed in collaboration with the European Heart Rhythm Association,” European Heart Journal, vol. 28, no. 18, pp. 2256–2295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Higuchi, T. Toyama, H. Tada, S. Naito, S. Ohshima, and M. Kurabayashi, “Usefulness of biventricular pacing to improve cardiac symptoms, exercise capacity and sympathetic nerve activity in patients with moderate to severe chronic heart failure,” Circulation Journal, vol. 70, no. 6, pp. 703–709, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. S. A. D. Nishioka, M. Martinelli Filho, S. C. S. Brandão et al., “Cardiac sympathetic activity pre and post resynchronization therapy evaluated by 123I-MIBG myocardial scintigraphy,” Journal of Nuclear Cardiology, vol. 14, no. 6, pp. 852–859, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Burri, H. Sunthorn, A. Somsen et al., “Improvement in cardiac sympathetic nerve activity in responders to resynchronization therapy,” Europace, vol. 10, no. 3, pp. 374–378, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. M. Cha, P. Chareonthaitawee, Y. X. Dong et al., “Cardiac sympathetic reserve and response to cardiac resynchronization therapy,” Circulation, vol. 4, no. 3, pp. 339–344, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Tanaka, K. Tatsumi, S. Fujiwara et al., “Effect of left ventricular dyssynchrony on cardiac sympathetic activity in heart failure patients with wide QRS duration,” Circulation Journal, vol. 76, no. 2, pp. 382–389, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Shinohara, N. Takahashi, S. Saito et al., “Effect of cardiac resynchronization therapy on cardiac sympathetic nervous dysfunction and serum C-reactive protein level,” Pacing and Clinical Electrophysiology, vol. 34, pp. 1225–1230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. D. P. Zipes, A. J. Camm, M. Borggrefe et al., “ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death. A Report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines,” Journal of the American College of Cardiology, vol. 48, no. 5, pp. e247–e346, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Nakajima, K. Okuda, S. Matsuo et al., “Standardization of metaiodobenzylguanidine heartto mediastinum ratio using a calibration phantom: effects of correction on normal databases and a multicentre study,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, no. 1, pp. 113–119, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Okuda, K. Nakajima, T. Hosoya et al., “Semi-automated algorithm for calculating heart-to-mediastinum ratio in cardiac Iodine-123 MIBG imaging,” Journal of Nuclear Cardiology, vol. 18, no. 1, pp. 82–89, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Matsuo, K. Nakajima, K. Okuda et al., “Standardization of the heart-to-mediastinum ratio of 123I- labelled-metaiodobenzylguanidine uptake using the dual energy window method: feasibility of correction with different camera-collimator combinations,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, no. 4, pp. 560–566, 2009. View at Publisher · View at Google Scholar · View at Scopus