Table of Contents
International Journal of Molecular Imaging
Volume 2013 (2013), Article ID 278607, 10 pages
http://dx.doi.org/10.1155/2013/278607
Research Article

Synthesis of Clinical-Grade [18F]-Fluoroestradiol as a Surrogate PET Biomarker for the Evaluation of Estrogen Receptor-Targeting Therapeutic Drug

ADRD, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, USA

Received 1 January 2013; Revised 22 March 2013; Accepted 25 March 2013

Academic Editor: Hideo Saji

Copyright © 2013 Manish Dixit et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. M. Peterson, D. A. Mankoff, T. Lawton et al., “Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol,” Journal of Nuclear Medicine, vol. 49, no. 3, pp. 367–374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Dehdashti, J. E. Mortimer, B. A. Siegel et al., “Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays,” Journal of Nuclear Medicine, vol. 36, no. 10, pp. 1766–1774, 1995. View at Google Scholar · View at Scopus
  3. R. Kumar, “Targeted functional imaging in breast cancer,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 3, pp. 346–353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Dehdashti, F. L. Flanagan, J. E. Mortimer, J. A. Katzenellenbogen, M. J. Welch, and B. A. Siegel, “Positron emission tomographic assessment of “metabolic flare” to predict response of metastatic breast cancer to antiestrogen therapy,” European Journal of Nuclear Medicine, vol. 26, no. 1, pp. 51–56, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Bhattacharyya, “Application of positron emission tomography in drug development,” Biochemistry and Pharmacology, vol. 1, article e128, no. 6, 2012. View at Google Scholar
  6. M. Dixit, J. Shi, L. Wei et al., “Automated synthesis and quality control tests of USP grade [18F]-fluoroestradiol for early phase clinical trial,” in Proceedings of the WMIC Meeting, San Diego, Calif, USA, 2011.
  7. http://clinicaltrials.gov/show/NCT01273168.
  8. P. Kumar, J. Mercer, C. Doerkson, K. Tonkin, and A. J. B. McEwan, “Clinical production, stability studies and PET imaging with 16-α-[18F]fluoroestradiol ([18F]FES) in ER positive breast cancer patients,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 10, no. 2, pp. 256S–265S, 2007. View at Google Scholar · View at Scopus
  9. S. J. Oh, D. Y. Chi, C. Mosdzianowski, H. S. Kil, J. S. Ryu, and D. H. Moon, “The automatic production of 16α-[18F]fluoroestradiol using a conventional [18F]FDG module with a disposable cassette system,” Applied Radiation and Isotopes, vol. 65, no. 6, pp. 676–681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Mori, S. Kasamatsu, C. Mosdzianowski, M. J. Welch, Y. Yonekura, and Y. Fujibayashi, “Automatic synthesis of 16α-[18F]fluoro-17β-estradiol using a cassette-type [18F]fluorodeoxyglucose synthesizer,” Nuclear Medicine and Biology, vol. 33, no. 2, pp. 281–286, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. K. E. Knott, D. Gratz, S. Hubner et al., “Simplified and automatic one-pot synthesis of 16α-[18F]fluoroestradiol without high-performance liquid chromatography purification,” Journal of Labelled Compounds and Radiopharmaceuticals, vol. 54, pp. 749–753, 2011. View at Google Scholar
  12. D. O. Kiesewetter, M. R. Kilbourn, and S. W. Landvatter, “Preparation of four fluorine- 18-labeled estrogens and their selective uptakes in target tissues of immature rats,” Journal of Nuclear Medicine, vol. 25, no. 11, pp. 1212–1221, 1984. View at Google Scholar · View at Scopus
  13. J. L. Lim, L. Zheng, M. S. Berridge, and T. J. Tewson, “The use of 3-methoxymethyl-16β,17β-epiestriol-O-cyclic sulfone as the precursor in the synthesis of F-18 16α-fluoroestradiol,” Nuclear Medicine and Biology, vol. 23, no. 7, pp. 911–915, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. B. H. Mock, W. Winkle, and M. T. Vavrek, “A color spot test for the detection of Kryptofix 2.2.2 in [18F]FDG preparations,” Nuclear Medicine and Biology, vol. 24, no. 2, pp. 193–195, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. Channing, B. X. Huang, and W. C. Eckelman, “Analysis of residual solvents in 2-[18F]FDG by GC,” Nuclear Medicine and Biology, vol. 28, no. 4, pp. 469–471, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. L. M. Peterson, B. F. Kurland, J. M. Link et al., “Factors influencing the uptake of 18F-fluoroestradiol in patients with estrogen receptor positive breast cancer,” Nuclear Medicine and Biology, vol. 38, pp. 969–978, 2011. View at Google Scholar
  17. S. Lu, A. M. Giamis, and V. W. Pike, “Synthesis of [18F]fallypride in a micro-reactor: rapid optimization and multiple-production in small doses for micro-PET studies,” Current Radiopharmaceuticals, vol. 2, no. 1, pp. 49–55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Gao, M. Wang, B. H. Mock et al., “An improved synthesis of dopamine D2/D3 receptor radioligands [11C]fallypride and [18F]fallypride,” Applied Radiation and Isotopes, vol. 68, no. 6, pp. 1079–1086, 2010. View at Publisher · View at Google Scholar · View at Scopus