Table of Contents
International Journal of Molecular Imaging
Volume 2013 (2013), Article ID 435959, 12 pages
http://dx.doi.org/10.1155/2013/435959
Research Article

Region-Based Partial Volume Correction Techniques for PET Imaging: Sinogram Implementation and Robustness

1Department of Medical Biophysics, University of Toronto, Odette Cancer Centre at Sunnybrook Health Sciences Centre, Room TG-217, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5
2Department of Electrical and Computer Engineering, University of McMaster, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
3L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5
4Institute of Medical Science, 1 King’s College Circle, University of Toronto, Toronto, ON, Canada M5S 1A8
5Department of Medical Physics, Odette Cancer Centre at Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5
6Department of Radiation Oncology, University of Toronto, Faculty of Medicine, 150 College Street, Room 106, Toronto, ON, Canada M5S 3E2
7Department of Radiation Oncology, Odette Cancer Centre at Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5
8Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5

Received 2 June 2013; Revised 2 September 2013; Accepted 3 October 2013

Academic Editor: Habib Zaidi

Copyright © 2013 Mike Sattarivand et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Fazio and D. Perani, “Importance of partial-volume correction in brain PET studies,” Journal of Nuclear Medicine, vol. 41, no. 11, pp. 1849–1850, 2000. View at Google Scholar · View at Scopus
  2. C. C. Meltzer, P. E. Kinahan, P. J. Greer et al., “Comparative evaluation of MR-based partial-volume correction schemes for PET,” Journal of Nuclear Medicine, vol. 40, no. 12, pp. 2053–2065, 1999. View at Google Scholar · View at Scopus
  3. F. Yokoi, O. G. Rousset, A. S. Dogan et al., “Impact of partial volume correction on kinetic parameters: preliminary experience in patient studies,” in Quantitative Functional Brain Imaging With Positron Emission Tomography, R. E. Carson, Ed., Academic Press, San Diego, Calif, USA, 1998. View at Google Scholar
  4. W. Moses and S. Derenzo, “Empirical observation of resolution degradation in positron emission tomographs utilizing block detectors,” Journal of Nuclear Medicine, vol. 34, p. 101, 1993. View at Google Scholar
  5. M. Soret, S. L. Bacharach, and I. Buvat, “Partial-volume effect in PET tumor imaging,” Journal of Nuclear Medicine, vol. 48, no. 6, pp. 932–945, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. S. Kirov, J. Z. Piao, and C. R. Schmidtlein, “Partial volume effect correction in PET using regularized iterative deconvolution with variance control based on local topology,” Physics in Medicine and Biology, vol. 53, no. 10, pp. 2577–2591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. B.-K. Teo, Y. Seo, S. L. Bacharach et al., “Partial-volume correction in PET: validation of an iterative postreconstruction method with phantom and patient data,” Journal of Nuclear Medicine, vol. 48, no. 5, pp. 802–810, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. L. Barbee, R. T. Flynn, J. E. Holden, R. J. Nickles, and R. Jeraj, “A method for partial volume correction of PET-imaged tumor heterogeneity using expectation maximization with a spatially varying point spread function,” Physics in Medicine and Biology, vol. 55, no. 1, pp. 221–236, 2010. View at Google Scholar · View at Scopus
  9. P. Gantet, P. Payoux, A. Celler et al., “Iterative three-dimensional expectation maximization restoration of single photon emission computed tomography images: application in striatal imaging,” Medical Physics, vol. 33, no. 1, pp. 52–60, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Wang and B. Fei, “An MR image-guided, voxel-based partial volume correction method for PET images,” Medical Physics, vol. 39, no. 1, pp. 179–194, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Shidahara, C. Tsoumpas, A. Hammers et al., “Functional and structural synergy for resolution recovery and partial volume correction in brain PET,” NeuroImage, vol. 44, no. 2, pp. 340–348, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Boussion, M. Hatt, F. Lamare et al., “A multiresolution image based approach for correction of partial volume effects in emission tomography,” Physics in Medicine and Biology, vol. 51, no. 7, pp. 1857–1876, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. O. G. Rousset, Y. Ma, and A. C. Evans, “Correction for partial volume effects in PET: principle and validation,” Journal of Nuclear Medicine, vol. 39, no. 5, pp. 904–911, 1998. View at Google Scholar · View at Scopus
  14. M. Quarantelli, K. Berkouk, A. Prinster et al., “Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction,” Journal of Nuclear Medicine, vol. 45, no. 2, pp. 192–201, 2004. View at Google Scholar · View at Scopus
  15. J. Tohka and A. Reilhac, “Deconvolution-based partial volume correction in Raclopride-PET and Monte Carlo comparison to MR-based method,” NeuroImage, vol. 39, no. 4, pp. 1570–1584, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Southekal, S. J. McQuaid, M. F. Kijewski, and S. C. Moore, “Evaluation of a method for projection-based tissue-activity estimation within small volumes of interest,” Physics in Medicine and Biology, vol. 57, no. 3, pp. 685–701, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Du, B. M. W. Tsui, and E. C. Frey, “Partial volume effect compensation for quantitative brain SPECT imaging,” IEEE Transactions on Medical Imaging, vol. 24, no. 8, pp. 969–976, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Ma and A. C. Evans, “Analytical modeling of pet imaging with correlated functional and structural images,” IEEE Transactions on Nuclear Science, vol. 44, no. 6, pp. 2439–2444, 1997. View at Google Scholar · View at Scopus
  19. H. Uchida, T. W. Chow, D. C. Mamo et al., “Effects of aging on 5-HT2AR binding: a HRRT PET study with and without partial volume corrections,” International Journal of Geriatric Psychiatry, vol. 26, no. 12, pp. 1300–1308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Lehnert, M.-C. Gregoire, A. Reilhac, and S. R. Meikle, “Characterisation of partial volume effect and region-based correction in small animal positron emission tomography (PET) of the rat brain,” NeuroImage, vol. 60, no. 4, pp. 2144–2157, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Hahn, L. Nics, P. Baldinger et al., “Combining image-derived and venous input functions enables quantification of serotonin-1A receptors with [carbonyl-11C]WAY-100635 independent of arterial sampling,” Neuroimage, vol. 62, pp. 199–206, 2012. View at Google Scholar
  22. B. Sattler, T. Jochimsen, H. Barthel et al., “Physical and organizational provision for installation, regulatory requirements and implementation of a simultaneous hybrid PET/MR-imaging system in an integrated research and clinical setting,” MAGMA, vol. 26, pp. 159–171, 2013. View at Google Scholar
  23. V. Frouin, C. Comtat, A. Reilhac, and M.-C. Grégoire, “Correction of partial-volume effect for PET striatal imaging: fast implementation and study of robustness,” Journal of Nuclear Medicine, vol. 43, no. 12, pp. 1715–1726, 2002. View at Google Scholar · View at Scopus
  24. O. G. Rousset, D. L. Collins, A. Rahmim, and D. F. Wong, “Design and implementation of an automated partial volume correction in PET: application to dopamine receptor quantification in the normal human striatum,” Journal of Nuclear Medicine, vol. 49, no. 7, pp. 1097–1106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Sattarivand, M. Kusano, I. Poon, and C. Caldwell, “Symmetric geometric transfer matrix partial volume correction for PET imaging: principle, validation, and robustness,” Physics in Medicine and Biology, vol. 57, pp. 7101–7116, 2012. View at Google Scholar
  26. I. G. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi, and P. B. Hoffer, “Computerized three-dimensional segmented human anatomy,” Medical Physics, vol. 21, no. 2, pp. 299–302, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. S. R. Cherry, J. A. Sorenson, and M. E. Phelps, Physics in Nuclear Medicine, Elsevier Saunders, Philadelphia, Pa, USA, 2003.
  28. K. Thielemans, C. Tsoumpas, S. Mustafovic et al., “STIR: software for tomographic image reconstruction release 2,” Physics in Medicine and Biology, vol. 57, no. 4, pp. 867–883, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Todd-Pokropek, T. D. Cradduck, and F. Deconinck, “A file format for the exchange of nuclear medicine image data: a specification of Interfile version 3.3,” Nuclear Medicine Communications, vol. 13, no. 9, pp. 673–699, 1992. View at Google Scholar · View at Scopus
  30. P. E. Kinahan and J. G. Rogers, “Analytic 3D image reconstruction using all detected events,” IEEE Transactions on Nuclear Science, vol. 36, no. 1, pp. 964–968, 1989. View at Publisher · View at Google Scholar · View at Scopus
  31. U. Tuna, S. Peltonen, and U. Ruotsalainen, “Interpolation for the gap-filling of the HRRT PET sinograms by using the slices in the direction of the radial samples,” in Proceedings of the IEEE Nuclear Science Symposium Conference Record (NSS/MIC '09), pp. 3273–3279, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. C. C. Watson, “New, faster, image-based scatter correction for 3D PET,” IEEE Transactions on Nuclear Science, vol. 47, no. 4, pp. 1587–1594, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Pajevic, M. E. Daube-Witherspoon, S. L. Bacharach, and R. E. Carson, “Noise characteristics of 3-d and 2-d pet images,” IEEE Transactions on Medical Imaging, vol. 17, no. 1, pp. 9–23, 1998. View at Google Scholar · View at Scopus
  34. R. N. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill, New York, NY, USA, 2000.
  35. M. E. Phelps, PET: Physics, Instrumentation, and Scanners, Springer, New York, NY, USA, 2006.
  36. A. M. Alessio and P. E. Kinahan, “Improved quantitation for PET/CT image reconstruction with system modeling and anatomical priors,” Medical Physics, vol. 33, no. 11, pp. 4095–4103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. E. J. Hoffman, S. C. Huang, D. Plummer, and M. E. Phelps, “Quantitation in positron emission computed tomography: 6. Effect of nonuniform resolution,” Journal of Computer Assisted Tomography, vol. 6, no. 5, pp. 987–999, 1982. View at Google Scholar · View at Scopus
  38. J. Qi and R. M. Leahy, “Iterative reconstruction techniques in emission computed tomography,” Physics in Medicine and Biology, vol. 51, pp. R541–R578, 2006. View at Google Scholar