Table of Contents
International Journal of Molecular Imaging
Volume 2013, Article ID 921260, 12 pages
http://dx.doi.org/10.1155/2013/921260
Clinical Study

Comparison of Five Parathyroid Scintigraphic Protocols

1Department of Nuclear Medicine, Satakunta Central Hospital, Sairaalantie 3, 28500 Pori, Finland
2Department of Clinical Physiology and Nuclear Medicine, Helsinki University Central Hospital, HUS, P.O. Box 340, 00029 Helsinki, Finland
3HUS Medical Imaging Center, Helsinki University Central Hospital, P.O. Box 340, 00029 Helsinki, Finland
4Turku PET Centre, Turku University Hospital, P.O. Box 52, 20521 Turku, Finland
5Department of Biomedical Engineering, Tampere University of Technology, P.O. Box 527, 33101 Tampere, Finland
6Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, P.O. Box 52, 20521 Turku, Finland

Received 25 October 2012; Revised 23 December 2012; Accepted 27 December 2012

Academic Editor: Francesca Pons

Copyright © 2013 Virpi Tunninen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Coakley, A. G. Kettle, C. P. Wells, M. J. O'Doherty, and R. E. C. Collins, “99Tcm sestamibi—a new agent for parathyroid imaging,” Nuclear Medicine Communications, vol. 10, no. 11, pp. 791–794, 1989. View at Google Scholar · View at Scopus
  2. F. Lumachi, M. Ermani, S. Basso, P. Zucchetta, N. Borsato, and G. Favia, “Localization of parathyroid tumours in the minimally invasive era: Which technique should be chosen? Population-based analysis of 253 patients undergoing parathyroidectomy and factors affecting parathyroid gland detection,” Endocrine-Related Cancer, vol. 8, no. 1, pp. 63–69, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Taillefer, Y. Boucher, C. Potvin, and R. Lambert, “Detection and localization of parathyroid adenomas in patients with hyperparathyroidism using a single radionuclide imaging procedure with technetium-99m-sestamibi (double-phase study),” Journal of Nuclear Medicine, vol. 33, no. 10, pp. 1801–1807, 1992. View at Google Scholar · View at Scopus
  4. D. R. Neumann, C. B. Esselstyn Jr., R. T. Go, C. O. Wong, T. W. Rice, and N. A. Obuchowski, “Comparison of double-phase 99mTc-sestamibi with 123I-99mTc-sestamibi subtraction SPECT in hyperparathyroidism,” American Journal of Roentgenology, vol. 169, no. 6, pp. 1671–1674, 1997. View at Google Scholar · View at Scopus
  5. W. C. Lavely, S. Goetze, K. P. Friedman et al., “Comparison of SPECT/CT, SPECT, and planar imaging with single- and dual-phase 99mTc-sestamibi parathyroid scintigraphy,” Journal of Nuclear Medicine, vol. 48, no. 7, pp. 1084–1089, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Sharma, P. Mazzaglia, M. Milas et al., “Radionuclide imaging for hyperparathyroidism (HPT): Which is the best technetium-99m sestamibi modality?” Surgery, vol. 140, no. 6, pp. 856–865, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Tunninen, T. Kauppinen, H. Eskola, and M. O. Koskinen, “Parathyroid scintigraphy protocols in Finland in 2010: Results of the query and current status,” NuklearMedizin, vol. 49, no. 5, pp. 187–194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Mihai, D. Simon, and P. Hellman, “Imaging for primary hyperparathyroidism-an evidence-based analysis,” Langenbeck's Archives of Surgery, vol. 394, no. 5, pp. 765–784, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Ceyssens and L. Mortelmans, “Parathyroid imaging: basic principles and KU Leuven experience: MIBI-dual phase versus MIBI/I-123,” Acta Oto-Rhino-Laryngologica Belgica, vol. 55, no. 2, pp. 103–117, 2001. View at Google Scholar · View at Scopus
  10. E. Hindie, O. Ugur, D. Fuster et al., “2009 EANM parathyroid guidelines,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, no. 7, pp. 1201–1216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Hindié, D. Mellière, C. Jeanguillaume, L. Perlemuter, F. Chéhadé, and P. Galle, “Parathyroid imaging using simultaneous double-window recording of technetium-99m-sestamibi and iodine-123,” Journal of Nuclear Medicine, vol. 39, no. 6, pp. 1100–1105, 1998. View at Google Scholar · View at Scopus
  12. C. Dalar, O. Ozdogan, M. G. Durak et al., “Inter-observer and intra-observer agreement in parathyroid scintigraphy; what can be done for making parathyroid scintigraphy more reliable?” Endocrine Practice, pp. 1–32, 2012. View at Google Scholar
  13. M. J. O'Doherty and A. G. Kettle, “Parathyroid imaging: preoperative localization,” Nuclear Medicine Communications, vol. 24, no. 2, pp. 125–131, 2003. View at Google Scholar · View at Scopus
  14. D. Taieb, E. Hindie, G. Grassetto, P. M. Colletti, and D. Rubello, “Parathyroid scintigraphy: when, how, and why? A concise systematic review,” Clinical Nuclear Medicine, vol. 37, pp. 568–574, 2012. View at Publisher · View at Google Scholar
  15. A. K. Arveschoug, H. Bertelsen, and B. Vammen, “Presurgical localization of abnormal parathyroid glands using a single injection of Tc-99m sestamibi comparison of high-resolution parallel-hole and pinhole collimators, and interobserver and intraobserver variation,” Clinical Nuclear Medicine, vol. 27, no. 4, pp. 249–254, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. A. K. Arveschoug, H. Bertelsen, B. Vammen, and J. Brøchner-Mortensen, “Preoperative dual-phase parathyroid imaging with Tc-99m-sestamibi: accuracy and reproducibility of the pinhole collimator with and without oblique images,” Clinical Nuclear Medicine, vol. 32, no. 1, pp. 9–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. V. S. Dontu, A. G. Kettle, M. J. O'Doherty, and A. J. Coakley, “Optimization of parathyroid imaging by simultaneous dual energy planar and single photon emission tomography,” Nuclear Medicine Communications, vol. 25, no. 11, pp. 1089–1093, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. I. A. Ho Shon, W. Yan, P. J. Roach et al., “Comparison of pinhole and SPECT99mTc-MIBI imaging in primary hyperparathyroidism,” Nuclear Medicine Communications, vol. 29, no. 11, pp. 949–955, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. I. A. Ho Shon, E. J. Bernard, P. J. Roach, and L. W. Delbridge, “The value of oblique pinhole images in pre-operative localisation with 99mTc-MIBI for primary hyperparathyroidism,” European Journal of Nuclear Medicine, vol. 28, no. 6, pp. 736–742, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. M. B. Tomas, P. V. Pugliese, G. G. Tronco, C. Love, C. J. Palestro, and K. J. Nichols, “Pinhole versus parallel-hole collimators for parathyroid imaging: an intraindividual comparison,” Journal of Nuclear Medicine Technology, vol. 36, no. 4, pp. 189–194, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Lorberboym, I. Minski, S. Macadziob, G. Nikolov, and P. Schachter, “Incremental diagnostic value of preoperative 99mTc-MIBI SPECT in patients with a parathyroid adenoma,” Journal of Nuclear Medicine, vol. 44, no. 6, pp. 904–908, 2003. View at Google Scholar · View at Scopus
  22. D. Moka, E. Voth, M. Dietlein, A. Larena-Avellaneda, and H. Schicha, “Technetium 99m-MIBI-SPECT: a highly sensitive diagnostic tool for localization of parathyroid adenomas,” Surgery, vol. 128, no. 1, pp. 29–35, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Slater and F. V. Gleeson, “Increased sensitivity and confidence of SPECT over planar imaging in dual-phase sestamibi for parathyroid adenoma detection,” Clinical Nuclear Medicine, vol. 30, no. 1, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. D. L. Thomas, T. Bartel, Y. Menda, J. Howe, M. M. Graham, and M. E. Juweid, “Single photon emission computed tomography (SPECT) should be routinely performed for the detection of parathyroid abnormalities utilizing technetium-99m sestamibi parathyroid scintigraphy,” Clinical Nuclear Medicine, vol. 34, no. 10, pp. 651–655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Harris, J. Yoo, A. Driedger et al., “Accuracy of technetium-99M SPECT-CT hybrid images in predicting the precise intraoperative anatomical location of parathyroid adenomas,” Head and Neck, vol. 30, no. 4, pp. 509–517, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. D. R. Neumann, N. A. Obuchowski, and F. P. DiFilippo, “Preoperative 123I/99mTc-sestamibi subtraction SPECT and SPECT/CT in primary hyperparathyroidism,” Journal of Nuclear Medicine, vol. 49, no. 12, pp. 2012–2017, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Papathanassiou, J. B. Flament, J. M. Pochart et al., “SPECT/CT in localization of parathyroid adenoma or hyperplasia in patients with previous neck surgery,” Clinical Nuclear Medicine, vol. 33, no. 6, pp. 394–397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Prommegger, G. Wimmer, C. Profanter et al., “Virtual neck exploration: a new method for localizing abnormal parathyroid glands,” Annals of Surgery, vol. 250, no. 5, pp. 761–765, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. P. J. Roach, G. P. Schembri, I. A. Ho Shon, E. A. Bailey, and D. L. Bailey, “SPECT/CT imaging using a spiral CT scanner for anatomical localization: impact on diagnostic accuracy and reporter confidence in clinical practice,” Nuclear Medicine Communications, vol. 27, no. 12, pp. 977–987, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Serra, P. Bolasco, L. Satta, A. Nicolosi, A. Uccheddu, and M. Piga, “Role of SPECT/CT in the preoperative assessment of hyperparathyroid patients,” Radiologia Medica, vol. 111, no. 7, pp. 999–1008, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. M. L. Taubman, M. Goldfarb, and J. I. Lew, “Role of SPECT and SPECT/CT in the surgical treatment of primary hyperparathyroidism,” International Journal of Molecular Imaging, vol. 2011, Article ID 141593, 2011. View at Publisher · View at Google Scholar
  32. G. Wimmer, C. Profanter, P. Kovacs et al., “CT-MIBI-SPECT image fusion predicts multiglandular disease in hyperparathyroidism,” Langenbeck's Archives of Surgery, vol. 395, no. 1, pp. 73–80, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Pata, C. Casella, S. Besuzio, F. Mittempergher, and B. Salerni, “Clinical appraisal of 99mTechnetium-sestamibi SPECT/CT compared to conventional SPECT in patients with primary hyperparathyroidism and concomitant nodular goiter,” Thyroid, vol. 20, no. 10, pp. 1121–1127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Pata, C. Casella, G. C. Magri, S. Lucchini, M. B. Panarotto, N. Crea et al., “Financial and clinical implications of low-energy CT combined with 99m Technetium-sestamibi SPECT for primary hyperparathyroidism,” Annals of Surgical Oncology, vol. 18, pp. 2555–2563, 2011. View at Publisher · View at Google Scholar
  35. I. W. Gayed, E. E. Kim, W. F. Broussard et al., “The value of 99mTc-sestamibi SPECT/CT over conventional SPECT in the evaluation of parathyroid adenomas or hyperplasia,” Journal of Nuclear Medicine, vol. 46, no. 2, pp. 248–252, 2005. View at Google Scholar · View at Scopus
  36. J. Ruf, D. Seehofer, T. Denecke et al., “Impact of image fusion and attenuation correction by SPECT-CT on the scintigraphic detection of parathyroid adenomas,” NuklearMedizin, vol. 46, no. 1, pp. 15–21, 2007. View at Google Scholar · View at Scopus
  37. C. Billotey, A. Aurengo, Y. Najean et al., “Identifying abnormal parathyroid glands in the thyroid uptake area using technetium-99m-sestamibi and factor analysis of dynamic structures,” Journal of Nuclear Medicine, vol. 35, no. 10, pp. 1631–1636, 1994. View at Google Scholar · View at Scopus
  38. Y. Krausz, E. Shiloni, M. Bocher, S. Agranovicz, B. Manos, and R. Chisin, “Diagnostic dilemmas in parathyroid scintigraphy,” Clinical Nuclear Medicine, vol. 26, no. 12, pp. 997–1001, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Phitayakorn and C. R. McHenry, “Incidence and location of ectopic abnormal parathyroid glands,” American Journal of Surgery, vol. 191, no. 3, pp. 418–423, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. A. C. Perkins, D. R. Whalley, and J. G. Hardy, “Physical approach for the reduction of dual radionuclide image subtraction artefacts in immunoscintigraphy,” Nuclear Medicine Communications, vol. 5, no. 8, pp. 501–512, 1984. View at Google Scholar · View at Scopus