Table of Contents
International Journal of Molecular Imaging
Volume 2014 (2014), Article ID 102702, 13 pages
http://dx.doi.org/10.1155/2014/102702
Research Article

Longitudinal Imaging of Cancer Cell Metastases in Two Preclinical Models: A Correlation of Noninvasive Imaging to Histopathology

1Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
2Small Animal Imaging Program, Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
3Pathology/Histotechnology Laboratory, Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA

Received 3 December 2013; Accepted 18 January 2014; Published 3 March 2014

Academic Editor: Domenico Rubello

Copyright © 2014 Pavan P. Adiseshaiah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. L. Chaffer and R. A. Weinberg, “A perspective on cancer cell metastasis,” Science, vol. 331, no. 6024, pp. 1559–1564, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. I. J. Fidler, “Critical determinants of metastasis,” Seminars in Cancer Biology, vol. 12, no. 2, pp. 89–96, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Damia and M. D'Incalci, “Contemporary pre-clinical development of anticancer agents—what are the optimal preclinical models?” European Journal of Cancer, vol. 45, no. 16, pp. 2768–2781, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. B. A. Hoff, K. Chughtai, Y. H. Jeon et al., “Multimodality imaging of tumor and bone response in a mouse model of bony metastasis,” Translational Oncology, vol. 5, no. 6, pp. 415–421, 2012. View at Google Scholar
  5. A. L. Puaux, L. C. Ong, Y. Jin et al., “A comparison of imaging techniques to monitor tumor growth and cancer progression in living animals,” International Journal of Molecular Imaging, vol. 2011, Article ID 321538, 12 pages, 2011. View at Publisher · View at Google Scholar
  6. G. van der Horst, J. J. van Asten, A. Figdor et al., “Real-time cancer cell tracking by bioluminescence in a preclinical model of human bladder cancer growth and metastasis,” European Urology, vol. 60, no. 2, pp. 337–343, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. E. O. Aboagye, F. J. Gilbert, I. N. Fleming et al., “Recommendations for measurement of tumour vascularity with positron emission tomography in early phase clinical trials,” European Radiology, vol. 22, no. 7, pp. 1465–1478, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. H. C. Kang, K. S. Tan, S. M. Keefe et al., “MRI assessment of early tumor response in metastatic renal cell carcinoma patients treated with sorafenib,” American Journal of Roentgenology, vol. 200, no. 1, pp. 120–126, 2013. View at Google Scholar
  9. A. Balducci, Y. Wen, Y. Zhang et al., “A novel probe for the non-invasive detection of tumor-associated inflammation,” Oncoimmunology, vol. 2, no. 2, Article ID e23034, 2013. View at Google Scholar
  10. K. Changani, C. Pereira, S. Young et al., “Longitudinal characterisation of a model of chronic allergic lung inflammation in mice using imaging, functional and immunological methods,” Journal of Inflammation, vol. 10, supplement 1, p. P4, 2013. View at Publisher · View at Google Scholar
  11. J. P. Holland, P. Cumming, and N. Vasdev, “PET of signal transduction pathways in cancer,” Journal of Nuclear Medicine, vol. 53, no. 9, pp. 1333–1336, 2012. View at Google Scholar
  12. N. Matusiak, A. Waarde, R. Bischoff et al., “Probes for non-invasive matrix metalloproteinase-targeted imaging with PET and SPECT,” Current Pharmaceutical Design, vol. 19, no. 25, pp. 4647–4672, 2013. View at Google Scholar
  13. P. C. Black, A. Shetty, G. A. Brown et al., “Validating bladder cancer xenograft bioluminescence with magnetic resonance imaging: the significance of hypoxia and necrosis,” BJU International, vol. 106, no. 11, pp. 1799–1804, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Giubellino, G. M. Woldemichael, C. Sourbier et al., “Characterization of two mouse models of metastatic pheochromocytoma using bioluminescence imaging,” Cancer Letters, vol. 316, no. 1, pp. 46–52, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Zabala, P. Alzuguren, C. Benavides et al., “Evaluation of bioluminescent imaging for noninvasive monitoring of colorectal cancer progression in the liver and its response to immunogene therapy,” Molecular Cancer, vol. 8, article 2, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Ma, Z. Liu, X. Yang et al., “Dual-modality monitoring of tumor response to cyclophosphamide therapy in mice with bioluminescence imaging and small-animal positron emission tomography,” Molecular Imaging, vol. 10, no. 4, pp. 278–283, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Rehemtulla, L. D. Stegman, S. J. Cardozo et al., “Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging,” Neoplasia, vol. 2, no. 6, pp. 491–495, 2000. View at Google Scholar · View at Scopus
  18. O. Szentirmai, C. H. Baker, N. Lin et al., “Noninvasive bioluminescence imaging of luciferase expressing intracranial U87 xenografts: correlation with magnetic resonance imaging determined tumor volume and longitudinal use in assessing tumor growth and antiangiogenic treatment effect,” Neurosurgery, vol. 58, no. 2, pp. 365–372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. G. Abdelwahab, T. Sankar, M. C. Preul, and A. C. Scheck, “Intracranial implantation with subsequent 3D in vivo bioluminescent imaging of murine gliomas,” Journal of Visualized Experiments, no. 57, Article ID e3403, 2011. View at Google Scholar · View at Scopus
  20. X. Ji, L. Cheng, F. Wei et al., “Noninvasive visualization of retinoblastoma growth and metastasis via bioluminescence imaging,” Investigative Ophthalmology and Visual Science, vol. 50, no. 12, pp. 5544–5551, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. W. W. Overwijk and N. P. Restifo, “B16 as a mouse model for human melanoma,” Current Protocols in Immunology, vol. 20, p. 20.1, 2001. View at Google Scholar · View at Scopus
  22. D. E. Jenkins, Y. S. Hornig, Y. Oei, J. Dusich, and T. Purchio, “Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice,” Breast Cancer Research, vol. 7, no. 4, pp. R444–R454, 2005. View at Google Scholar · View at Scopus
  23. J.-B. Kim, K. Urban, E. Cochran et al., “Non-invasive detection of a small number of bioluminescent cancer cells in vivo,” PLoS ONE, vol. 5, no. 2, Article ID e9364, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. A. E. Vernon, S. J. Bakewell, and L. A. Chodosh, “Deciphering the molecular basis of breast cancer metastasis with mouse models,” Reviews in Endocrine and Metabolic Disorders, vol. 8, no. 3, pp. 199–213, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Tao, M. Fang, J. Alroy, and G. G. Gary, “Imagable 4T1 model for the study of late stage breast cancer,” BMC Cancer, vol. 8, article 228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. E. Price, A. Polyzos, R. D. Zhang, and L. M. Daniels, “Tumorigenicity and metastatis of human breast carcinoma cell lines in nude mice,” Cancer Research, vol. 50, no. 3, pp. 717–721, 1990. View at Google Scholar · View at Scopus
  27. K. Wang, S. Xie, Y. Ren, H. Xia, X. Zhang, and J. He, “Establishment of a bioluminescent MDA-MB-231 cell line for human triple-negative breast cancer research,” Oncology Reports, vol. 27, no. 6, pp. 1981–1989, 2012. View at Google Scholar
  28. C. T. Winkelmann, S. D. Figueroa, T. L. Rold, W. A. Volkert, and T. J. Hoffman, “Microimaging characterization of a B16-F10 melanoma metastasis mouse model,” Molecular Imaging, vol. 5, no. 2, pp. 105–114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. C. M. Deroose, A. De, A. M. Loening et al., “Multimodality imaging of tumor xenografts and metastases in mice with combined small-animal PET, small-animal CT, and bioluminescence imaging,” Journal of Nuclear Medicine, vol. 48, no. 2, pp. 295–303, 2007. View at Google Scholar · View at Scopus
  30. D. E. Jenkins, Y. Oei, Y. S. Hornig et al., “Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis,” Clinical and Experimental Metastasis, vol. 20, no. 8, pp. 733–744, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Arguello, R. B. Baggs, and C. N. Frantz, “A murine model of experimental metastasis to bone and bone marrow,” Cancer Research, vol. 48, no. 23, pp. 6876–6881, 1988. View at Google Scholar · View at Scopus
  32. R. A. Barkhordar, E. D. Berston, and D. M. Ramos, “Cervical lymph node metastasis: model for study of Head/Neck melanoma,” European Journal of Cancer Part B, vol. 31, no. 1, pp. 49–52, 1995. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Frampas, C. Maurel, P. Thedrez, P. Remaud-Le Saëc, A. Faivre-Chauvet, and J. Barbet, “The intraportal injection model for liver metastasis: advantages of associated bioluminescence to assess tumor growth and influences on tumor uptake of radiolabeled anti-carcinoembryonic antigen antibody,” Nuclear Medicine Communications, vol. 32, no. 2, pp. 147–154, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. H.-T. Song, E. K. Jordan, B. K. Lewis et al., “Rat model of metastatic breast cancer monitored by MRI at 3 tesla and bioluminescence imaging with histological correlation,” Journal of Translational Medicine, vol. 7, article 88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Nogawa, T. Yuasa, S. Kimura et al., “Monitoring luciferase-labeled cancer cell growth and metastasis in different in vivo models,” Cancer Letters, vol. 217, no. 2, pp. 243–253, 2005. View at Publisher · View at Google Scholar · View at Scopus