Table of Contents
International Journal of Molecular Imaging
Volume 2014 (2014), Article ID 269365, 7 pages
Research Article

Lyophilized Kit for the Preparation of the PET Perfusion Agent [68Ga]-MAA

1Biomedical Engineering Department, Florida International University, 10555 West Flagler Street, EC 2614, Miami, FL 33174, USA
2Herbert Wertheim College of Medicine, Florida International University, 1240 SW 108 Avenue, University Park, Miami, FL 33174, USA
3Mount Sinai Medical Center, 4300 Alton Road, Miami Beach, FL 33140, USA

Received 14 January 2014; Revised 17 February 2014; Accepted 18 February 2014; Published 31 March 2014

Academic Editor: Adriaan A. Lammertsma

Copyright © 2014 Alejandro Amor-Coarasa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Rapid developments in the field of medical imaging have opened new avenues for the use of positron emitting labeled microparticles. The radioisotope used in our research was 68Ga, which is easy to obtain from a generator and has good nuclear properties for PET imaging. Methods. Commercially available macroaggregated albumin (MAA) microparticles were suspended in sterile saline, centrifuged to remove the free albumin and stannous chloride, relyophilized, and stored for later labeling with 68Ga. Labeling was performed at different temperatures and times. 68Ga purification settings were also tested and optimized. Labeling yield and purity of relyophilized MAA microparticles were compared with those that were not relyophilized. Results. MAA particles kept their original size distribution after relyophilization. Labeling yield was 98% at 75°C when a 68Ga purification system was used, compared to 80% with unpurified 68Ga. Radiochemical purity was over 97% up to 4 hours after the labeling. The relyophilized MAA and labeling method eliminate the need for centrifugation purification of the final product and simplify the labeling process. Animal experiments demonstrated the high in vivo stability of the obtained PET agent with more than 95% of the activity remaining in the lungs after 4 hours.