Table of Contents
International Journal of Molecular Imaging
Volume 2014 (2014), Article ID 269365, 7 pages
http://dx.doi.org/10.1155/2014/269365
Research Article

Lyophilized Kit for the Preparation of the PET Perfusion Agent [68Ga]-MAA

1Biomedical Engineering Department, Florida International University, 10555 West Flagler Street, EC 2614, Miami, FL 33174, USA
2Herbert Wertheim College of Medicine, Florida International University, 1240 SW 108 Avenue, University Park, Miami, FL 33174, USA
3Mount Sinai Medical Center, 4300 Alton Road, Miami Beach, FL 33140, USA

Received 14 January 2014; Revised 17 February 2014; Accepted 18 February 2014; Published 31 March 2014

Academic Editor: Adriaan A. Lammertsma

Copyright © 2014 Alejandro Amor-Coarasa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. D. Furth, A. J. Okinaka, E. F. Focht, and D. V. Becker, “The distribution, metabolic fate and radiation dosimetry of 131I labeled macroaggregated albumin,” Journal of Nuclear Medicine, vol. 6, pp. 506–518, 1965. View at Google Scholar
  2. J. P. Huberty, “99mTc sulfur colloid absorbed on ferric hydroxide macroaggregates for lung perfusion imaging,” The International Journal Of Applied Radiation And Isotopes, vol. 22, no. 7, pp. 425–426, 1971. View at Google Scholar · View at Scopus
  3. P. A. Schubiger, L. Lehmann, and M. Friebe, “PET chemistry: the driving force in molecular imaging,” in Proceedings of the Ernst Schering Foundation Symposium, December 2006.
  4. G. A. Even and M. A. Green, “Gallium-68-labeled macroaggregated human serum albumin,68Ga-MAA,” International Journal of Radiation Applications and Instrumentation., vol. 16, no. 3, pp. 319–321, 1989. View at Google Scholar · View at Scopus
  5. C. J. Mathias and M. A. Green, “A convenient route to [68Ga]Ga-MAA for use as a particulate PET perfusion tracer,” Applied Radiation and Isotopes, vol. 66, no. 12, pp. 1910–1912, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Maus, H. Buchholz, S. Ament, C. Brochhausen, N. Bausbacher, and M. Schreckenberger, “Labelling of commercially available human serum albumin kits with68Ga as surrogates for99mTc-MAA microspheres,” Applied Radiation and Isotopes, vol. 69, no. 1, pp. 171–175, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. S. Hofman, J. Beauregard, T. W. Barber, O. C. Neels, P. Eu, and R. J. Hicks, “68Ga PET/CT ventilation-perfusion imaging for pulmonary embolism: a pilot study with comparison to conventional scintigraphy,” Journal of Nuclear Medicine, vol. 52, no. 10, pp. 1513–1519, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. J. Ament, S. Maus, H. Reber et al., “PET lung ventilation/perfusion imaging using (68)Ga aerosol (Galligas) and (68)Ga-labeled macroaggregated albumin,” Recent Results in Cancer Research, vol. 194, pp. 395–423, 2013. View at Publisher · View at Google Scholar
  9. S. Gulec, G. Mesoloras, W. Dezarn, P. McNeillie, and A. Kennedy, “Biologic determinants of absorbed dose estimates in Y-90 microsphere treatment of hepatic malignancies: significance of tumor perfusion measured by Tc-99m MAA imaging,” Journal of Nuclear Medicine, vol. 48, supplement 2, article 396P, 2007. View at Google Scholar
  10. M. Gartenschlaeger, S. Maus, H. Buchholz, H. Reber, N. Pitton, and M. Schreckenberger, “Investigation for extrahepatic shunt before SIRT by PET/CT with68Ga-MAA,” Nuklearmedizin, vol. 50, no. 4, pp. N37–N38, 2011. View at Google Scholar · View at Scopus
  11. A. Amor-Coarasa, S. Gulec, and A. J. McGoron, “Inexpensive and cGMP capable Ga-68 purification system,” Journal of Nuclear Medicine, vol. 53, supplement 1, article 1742, 2012. View at Google Scholar
  12. R. Chandra, J. Shamoun, P. Braunstein, and O. L. DuHov, “Clinical evaluation of an instant kit for preparation of (99m)Tc MAA for lung scanning,” Journal of Nuclear Medicine, vol. 14, no. 9, pp. 702–705, 1973. View at Google Scholar · View at Scopus