Table of Contents Author Guidelines Submit a Manuscript
International Journal of Microbiology
Volume 2009 (2009), Article ID 614371, 8 pages
http://dx.doi.org/10.1155/2009/614371
Research Article

Genotypic and Phenotypic Assessment of Hyaluronidase among Type Strains of a Select Group of Staphylococcal Species

1Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
2Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
3Department of Biology, Ouachita Baptist University, Arkadelphia, AR 71998, USA

Received 13 August 2009; Accepted 15 October 2009

Academic Editor: William M. Shafer

Copyright © 2009 Mark E. Hart et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Q. Cheng, M. C. Yu, A. R. Reeves, and A. A. Salyers, “Identification and characterization of a Bacteroides gene, csuF, which encodes an outer membrane protein that is essential for growth on chondroitin sulfate,” Journal of Bacteriology, vol. 177, no. 13, pp. 3721–3727, 1995. View at Google Scholar · View at Scopus
  2. K. Homer, H. Shain, and D. Beighton, “The role of hyaluronidase in growth of Streptococcus intermedius on hyaluronate,” Advances in Experimental Medicine and Biology, vol. 418, pp. 681–683, 1997. View at Google Scholar · View at Scopus
  3. W. L. Hynes and S. L. Walton, “Hyaluronidases of gram-positive bacteria,” FEMS Microbiological Letters, vol. 183, no. 2, pp. 201–207, 2000. View at Google Scholar
  4. J. I. Rood and S. T. Cole, “Molecular genetics and pathogenesis of Clostridium perfringens,” Microbiological Reviews, vol. 55, no. 4, pp. 621–648, 1991. View at Google Scholar · View at Scopus
  5. H. Shain, K. A. Homer, and D. Beighton, “Degradation and utilisation of chondroitin sulphate by Streptococcus intermedius,” Journal of Medical Microbiology, vol. 44, no. 5, pp. 372–380, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. L. D. Smith, “Virulence factors of Clostridium perfringens,” Reviews of Infectious Diseases, vol. 1, no. 2, pp. 254–262, 1979. View at Google Scholar · View at Scopus
  7. C. R. Starr and N. C. Engleberg, “Role of hyaluronidase in subcutaneous spread and growth of group A Streptococcus,” Infection and Immunity, vol. 74, no. 1, pp. 40–48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Stern and M. J. Jedrzejas, “Hyaluronidases: their genomics, structures, and mechanisms of action,” Chemical Reviews, vol. 106, no. 3, pp. 818–839, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Makris, J. D. Wright, E. Ingham, and K. T. Holland, “The hyaluronate lyase of Staphylococcus aureus: a virulence factor?” Microbiology, vol. 150, no. 6, pp. 2005–2013, 2004. View at Google Scholar · View at Scopus
  10. R. C. Jones, J. Deck, R. D. Edmondson, and M. E. Hart, “Relative quantitative comparisons of the extracellular protein profiles of Staphylococcus aureus UAMS-1 and its sarA, agr, and sarA agr regulatory mutants using one-dimensional polyacrylamide gel electrophoresis and nanocapillary liquid chromatography coupled with tandem mass spectrometry,” Journal of Bacteriology, vol. 190, no. 15, pp. 5265–5278, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Kersey, L. Bower, L. Morris et al., “Integr8 and genome reviews: integrated views of complete genomes and proteomes,” Nucleic Acids Research, vol. 33, pp. D297–D302, 2005. View at Google Scholar
  12. J. P. Euzéby, “List of bacterial names with standing in nomenclature: a folder available on the Internet,” International Journal of Systematic Bacteriology, vol. 47, no. 2, pp. 590–592, 1997. View at Google Scholar
  13. W. E. Kloos and K. H. Schleifer, “Staphylococcus,” in Bergey's Manual of Systematic Bacteriology, P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt, Eds., pp. 1013–1035, The Williams and Wilkins, Baltimore, Md, USA, 1986. View at Google Scholar
  14. G. L. Archer, “Staphylococcus epidermidis and other coagulase-negative staphylococci,” in Principles and Practice of Infectious Diseases, G. L. Mandell, J. E. Bennett, and R. Dolin, Eds., pp. 1777–1784, Churchill Livingstone, New York, NY, USA, 1995. View at Google Scholar
  15. D. J. Diekema, M. A. Pfaller, F. J. Schnitz et al., “Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the western Pacific region for the SENTRY antimicrobial surveillance program, 1997–1999,” Clinical Infectious Diseases, vol. 32, no. 10, supplement 2, pp. S114–S132, 2001. View at Google Scholar
  16. J. Huebner and D. A. Goldmann, “Coagulase-negative staphylococci: role as pathogens,” Annual Review of Medicine, vol. 50, pp. 223–236, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. W. E. Kloos and T. L. Bannerman, “Update on clinical significance of coagulase-negative staphylococci,” Clinical Microbiology Reviews, vol. 7, no. 1, pp. 117–140, 1994. View at Google Scholar · View at Scopus
  18. W. E. Kloos and T. L. Bannermann, “Staphylococcus and Micrococcus,” in Manual of Clinical Microbiology, P. R. Murray, E. J. Baron, M. A. Pfaller, F. C. Tenover, and R. H. Yolken, Eds., pp. 289–298, ASM Press, Washington, DC, USA, 1995. View at Google Scholar
  19. L. A. Devriese, V. Hájek, P. Oeding et al., “Staphylococcus hyicus (Sompolinsky 1953) comb. nov. and Staphylococcus hyicus subsp. chromogenes subsp. nov.,” International Journal of Systematic Bacteriology, vol. 28, no. 4, pp. 482–490, 1978. View at Google Scholar · View at Scopus
  20. G. Foster, H. M. Ross, R. A. Hutson, and M. D. Collins, “Staphylococcus lutrae sp. nov., a new coagulase-positive species isolated from otters,” International Journal of Systematic Bacteriology, vol. 47, no. 3, pp. 724–726, 1997. View at Google Scholar · View at Scopus
  21. M. M. Martin de Nicolás, A. Vindel, and J. A. Sáez-Nieto, “Epidemiological typing of clinically significant strains of coagulase-negative staphylococci,” Journal of Hospital Infection, vol. 29, no. 1, pp. 35–43, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. P. E. Varaldo, R. Kilpper-Bälz, F. Biavasco, G. Satta, and K. H. Schleifer, “Staphylococcus delphini sp. nov., a coagulase-positive species isolated from dolphins,” International Journal of Systematic Bacteriology, vol. 38, no. 4, pp. 436–439, 1988. View at Google Scholar · View at Scopus
  23. K. K. Choudhuri and A. N. Chakrabarty, “Hyaluronate lyase activity of staphylococci,” Indian Journal of Experimental Biology, vol. 7, no. 3, pp. 183–185, 1969. View at Google Scholar · View at Scopus
  24. L. Essers and K. Radebold, “Rapid and reliable identification of Staphylococcus aureus by a latex agglutination test,” Journal of Clinical Microbiology, vol. 12, no. 5, pp. 641–643, 1980. View at Google Scholar · View at Scopus
  25. K. Saito, T. Higuchi, A. Kurata, T. Fukuyasu, and K. Ashida, “Characterization of non-pigmented Staphylococcus chromogenes,” Journal of Veterinary Medical Science, vol. 58, no. 7, pp. 711–713, 1996. View at Google Scholar · View at Scopus
  26. M. Kuroda, T. Ohta, I. Uchiyama et al., “Whole genome sequencing of meticillin-resistant Staphylococcus aureus,” The Lancet, vol. 357, no. 9264, pp. 1225–1240, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Steiner and D. Cruce, “A zymographic assay for detection of hyaluronidase activity on polyacrylamide gels and its application to enzymatic activity found in bacteria,” Analytical Biochemistry, vol. 200, no. 2, pp. 405–410, 1992. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Herron-Olson, J. R. Fitzgerald, J. M. Musser, and V. Kapur, “Molecular correlates of host specialization in Staphylococcus aureus,” PLoS ONE, vol. 2, no. 10, article e1120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. T. G. Holden, E. J. Feil, J. A. Lindsay et al., “Complete genomes of two clinical Staphylococcus aureus strains: evidence for the evolution of virulence and drug resistance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 26, pp. 9786–9791, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. L. M. Blank, P. Hugenholtz, and L. K. Nielsen, “Evolution of the hyaluronic acid synthesis (has) operon in Streptococcus zooepidemicus and other pathogenic streptococci,” Journal of Molecular Evolution, vol. 67, no. 1, pp. 13–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. D. J. Harrington, I. C. Sutcliffe, and N. Chanter, “The molecular basis of Streptococcus equi infection and disease,” Microbes and Infection, vol. 4, no. 4, pp. 501–510, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. L. A. Devriese and P. Oeding, “Coagulase and heat resistant nuclease producing Staphylococcus epidermidis strains from animals,” Journal of Applied Bacteriology, vol. 39, no. 2, pp. 197–207, 1975. View at Google Scholar · View at Scopus