Table of Contents Author Guidelines Submit a Manuscript
International Journal of Microbiology
Volume 2011, Article ID 127870, 16 pages
http://dx.doi.org/10.1155/2011/127870
Review Article

The S-Layer Glycome—Adding to the Sugar Coat of Bacteria

1Department of NanoBiotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
2Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, UK
3Institute of Genetics, General Genetics, Dresden University of Technology, Zellescher Weg 20b, 01217 Dresden, Germany

Received 15 March 2010; Accepted 29 June 2010

Academic Editor: Charlene Kahler

Copyright © 2011 Robin Ristl et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Whitfield, “Biosynthesis and assembly of capsular polysaccharides in Escherichia coli,” Annual Review of Biochemistry, vol. 75, pp. 39–68, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Abu-Qarn, J. Eichler, and N. Sharon, “Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea,” Current Opinion in Structural Biology, vol. 18, no. 5, pp. 544–550, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Messner, K. Steiner, K. Zarschler, and C. Schäffer, “S-layer nanoglycobiology of bacteria,” Carbohydrate Research, vol. 343, no. 12, pp. 1934–1951, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. C. J. Thibodeaux, C. E. Melançon III, and H.-W. Liu, “Natural-product sugar biosynthesis and enzymatic glycodiversification,” Angewandte Chemie—International Edition, vol. 47, no. 51, pp. 9814–9859, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. F. Mescher and J. L. Strominger, “Purification and characterization of a prokaryotic glycoprotein from the cell envelope of Halobacterium salinarium,” The Journal of Biological Chemistry, vol. 251, no. 7, pp. 2005–2014, 1976. View at Google Scholar · View at Scopus
  6. U. B. Sleytr and K. J. I. Thorne, “Chemical characterization of the regularly arranged surface layers of Clostridium thermosaccharolyticum and Clostridium thermohydrosulfuricum,” Journal of Bacteriology, vol. 126, no. 1, pp. 377–383, 1976. View at Google Scholar · View at Scopus
  7. U. B. Sleytr, E. M. Egelseer, N. Ilk, D. Pum, and B. Schuster, “S-Layers as a basic building block in a molecular construction kit,” FEBS Journal, vol. 274, no. 2, pp. 323–334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. U. B. Sleytr and T. J. Beveridge, “Bacterial S-layers,” Trends in Microbiology, vol. 7, no. 6, pp. 253–260, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Claus, E. Aka, T. Debaerdemaeker, C. Evrard, J.-P. Declercq, and H. König, “Primary structure of selected archaeal mesophilic and extremely thermophilic outer surface layer proteins,” Systematic and Applied Microbiology, vol. 25, no. 1, pp. 3–12, 2002. View at Google Scholar · View at Scopus
  10. C. Schäffer and P. Messner, “Surface-layer glycoproteins: an example for the diversity of bacterial glycosylation with promising impacts on nanobiotechnology,” Glycobiology, vol. 14, no. 8, pp. 31R–42R, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Eichler and M. W. W. Adams, “Posttranslational protein modification in Archaea,” Microbiology and Molecular Biology Reviews, vol. 69, no. 3, pp. 393–425, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Sumper and F. T. Wieland, “Bacterial glycoproteins,” in Glycoproteins, J. Montreuil, J. F. G. Vliegenthart, and H. Schachter, Eds., pp. 455–473, Elsevier, Amsterdam, The Netherlands, 1995. View at Google Scholar
  13. U. B. Sleytr, P. Messner, D. Pum, and M. Sára, “Crystalline bacterial cell surface layers (S layers): from supramolecular cell structure to biomimetics and nanotechnology,” Angewandte Chemie—International Edition, vol. 38, no. 8, pp. 1034–1054, 1999. View at Google Scholar · View at Scopus
  14. M. Sára, “Conserved anchoring mechanisms between crystalline cell surface S-layer proteins and secondary cell wall polymers in Gram-positive bacteria?” Trends in Microbiology, vol. 9, no. 2, pp. 47–49, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Schäffer and P. Messner, “The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together,” Microbiology, vol. 151, no. 3, pp. 643–651, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Messner and U. B. Sleytr, “Crystalline bacterial cell-surface layers,” Advances in Microbial Physiology, vol. 33, pp. 213–275, 1992. View at Google Scholar · View at Scopus
  17. M. Sára and U. B. Sleytr, “S-layer proteins,” Journal of Bacteriology, vol. 182, no. 4, pp. 859–868, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Novotny, A. Pfoestl, P. Messner, and C. Schäffer, “Genetic organization of chromosomal S-layer glycan biosynthesis loci of Bacillaceae,” Glycoconjugate Journal, vol. 20, no. 7-8, pp. 435–447, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. S.-W. Lee, M. Sabet, H.-S. Um, J. Yang, H. C. Kim, and W. Zhu, “Identification and characterization of the genes encoding a unique surface (S-) layer of Tannerella forsythia,” Gene, vol. 371, no. 1, pp. 102–111, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. C. M. Fletcher, M. J. Coyne, D. L. Bentley, O. F. Villa, and L. E. Comstock, “Phase-variable expression of a family of glycoproteins imparts a dynamic surface to a symbiont in its human intestinal ecosystem,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 7, pp. 2413–2418, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Kosma, C. Neuninger, R. Christian, G. Schulz, and P. Messner, “Glycan structure of the S-layer glycoprotein of Bacillus sp. L420-91,” Glycoconjugate Journal, vol. 12, no. 1, pp. 99–107, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Kosma, T. Wugeditsch, R. Christian, S. Zayni, and P. Messner, “Glycan structure of a heptose-containing S-layer glycoprotein of Bacillus thermoaerophilus,” Glycobiology, vol. 5, no. 8, pp. 791–796, 1995. View at Google Scholar · View at Scopus
  23. K. Meier-Stauffer, H.-J. Busse, F. A. Rainey et al., “Description of Bacillus thermoaerophilus sp. nov., to include sugar beet isolates and Bacillus brevis ATCC 12990,” International Journal of Systematic Bacteriology, vol. 46, no. 2, pp. 532–541, 1996. View at Google Scholar · View at Scopus
  24. P. Messner, A. Scheberl, W. Schweigkofler et al., “Taxonomic comparison of different thermophilic sugar beet isolates with glycosylated surface layer (S-Layer) proteins and their affiliation to Bacillus smithii,” Systematic and Applied Microbiology, vol. 20, no. 4, pp. 559–565, 1997. View at Google Scholar · View at Scopus
  25. M. S. Sidhu and I. Olsen, “S-layers of Bacillus species,” Microbiology, vol. 143, no. 4, pp. 1039–1052, 1997. View at Google Scholar · View at Scopus
  26. Z. Xu, B. Yao, M. Sun, and Z. Yu, “Protection of mice infected with Plasmodium berghei by Bacillus thuringiensis crystal proteins,” Parasitology Research, vol. 92, no. 1, pp. 53–57, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Hinode, M. Yokoyama, S. Tanabe, M. Yoshioka, and R. Nakamura, “Antigenic properties of the GroEL-like protein of Campylobacter rectus,” Oral Microbiology and Immunology, vol. 17, no. 1, pp. 16–21, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Peters, M. Peters, F. Lottspeich, W. Schäfer, and W. Baumeister, “Nucleotide sequence analysis of the gene encoding the Deinococcus radiodurans surface protein, derived amino acid sequence, and complementary protein chemical studies,” Journal of Bacteriology, vol. 169, no. 11, pp. 5216–5223, 1987. View at Google Scholar · View at Scopus
  29. D. J. Müller, W. Baumeister, and A. Engel, “Conformational change of the hexagonally packed intermediate layer of Deinococcus radiodurans monitored by atomic force microscopy,” Journal of Bacteriology, vol. 178, no. 11, pp. 3025–3030, 1996. View at Google Scholar · View at Scopus
  30. H. Rothfuss, J. C. Lara, A. K. Schmid, and M. E. Lidstrom, “Involvement of the S-layer proteins Hpi and SlpA in the maintenance of cell envelope integrity in Deinococcus radiodurans R1,” Microbiology, vol. 152, no. 9, pp. 2779–2787, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Jarosch, E. M. Egelseer, D. Mattanovich, U. B. Sleytr, and M. Sára, “S-layer gene sbsC of Bacillus stearothermaphilus ATCC 12980: molecular characterization and heterologous expression in Escherichia coli,” Microbiology, vol. 146, no. 2, pp. 273–281, 2000. View at Google Scholar · View at Scopus
  32. R. Novotny, C. Schäffer, J. Strauss, and P. Messner, “S-layer glycan-specific loci on the chromosome of Geobacillus stearothermophilus NRS 2004/3a and dTDP-L-rhamnose biosynthesis potential of G. stearothermophilus strains,” Microbiology, vol. 150, no. 4, pp. 953–965, 2004. View at Google Scholar · View at Scopus
  33. E. M. Egelseer, T. Danhorn, M. Pleschberger, C. Hotzy, U. B. Sleytr, and M. Sára, “Characterization of an S-layer glycoprotein produced in the course of S-layer variation of Bacillus stearothermophilus ATCC 12980 and sequencing and cloning of the sbsD gene encoding the protein moiety,” Archives of Microbiology, vol. 177, no. 1, pp. 70–80, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Schäffer, T. Wugeditsch, H. Kählig, A. Scheberl, S. Zayni, and P. Messner, “The surface layer (S-layer) glycoprotein of Geobacillus stearothermophilus NRS 2004/3a. Analysis of its glycosylation,” The Journal of Biological Chemistry, vol. 277, no. 8, pp. 6230–6239, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Steiner, R. Novotny, D. B. Werz et al., “Molecular basis of S-layer glycoprotein glycan biosynthesis in Geobacillus stearothermophilus,” The Journal of Biological Chemistry, vol. 283, no. 30, pp. 21120–21133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Schäffer, W. L. Franck, A. Scheberl, P. Kosma, T. R. McDermott, and P. Messner, “Classification of isolates from locations in Austria and Yellowstone National Park as Geobacillus tepidamans sp. nov,” International Journal of Systematic and Evolutionary Microbiology, vol. 54, no. 6, pp. 2361–2368, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Kählig, D. Kolarich, S. Zayni et al., “N-acetylmuramic acid as capping element of α-D-fucose-containing S-layer glycoprotein glycans from Geobacillus tepidamans GS5-97T,” The Journal of Biological Chemistry, vol. 280, no. 21, pp. 20292–20299, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Zayni, K. Steiner, A. Pföstl et al., “The dTDP-4-dehydro-6-deoxyglucose reductase encoding fcd gene is part of the surface layer glycoprotein glycosylation gene cluster of Geobacillus tepidamans GS5-97T,” Glycobiology, vol. 17, no. 4, pp. 433–443, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Shen and R. M. Weiner, “Isolation and characterization of S-layer proteins from a vent prosthecate bacterium,” Microbios, vol. 93, no. 374, pp. 7–16, 1998. View at Google Scholar · View at Scopus
  40. A. Möschl, C. Schäffer, U. B. Sleytr, P. Messner, R. Christian, and G. Schulz, “Characterization of the S-layer glycoproteins of two lactobacilli,” in Advances in Bacterial Paracrystalline Surface Layers, T. J. Beveridge and S. F. Koval, Eds., pp. 281–284, Plenum Press, New York, NY, USA, 1993. View at Google Scholar
  41. N. Mozes and S. Lortal, “X-ray photoelectron spectroscopy and biochemical analysis of the surface of Lactobacillus helveticus ATCC 12046,” Microbiology, vol. 141, no. 1, pp. 11–19, 1995. View at Google Scholar · View at Scopus
  42. G. L. Garrote, L. Delfederico, R. Bibiloni et al., “Lactobacilli isolated from kefir grains: evidence of the presence of S-layer proteins,” Journal of Dairy Research, vol. 71, no. 2, pp. 222–230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Mobili, M. Á. Serradell, S. A. Trejo, F. X. Avilés Puigvert, A. G. Abraham, and G. L. De Antoni, “Heterogeneity of S-layer proteins from aggregating and non-aggregating LactoBacillus kefir strains,” Antonie van Leeuwenhoek, vol. 95, no. 4, pp. 363–372, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. V. N. Khmelenina, M. G. Kalyuzhnaya, V. G. Sakharovsky, N. E. Snzina, Y. A. Trotsenko, and G. Gottschalk, “Osmoadaptation in halophilic and alkaliphilic methanotrophs,” Archives of Microbiology, vol. 172, no. 5, pp. 321–329, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Altman, J.-R. Brisson, P. Messner, and U. B. Sleytr, “Chemical characterization of the regularly arranged surface layer glycoprotein of Bacillus alvei CCM 2051,” Biochemistry and Cell Biology, vol. 69, no. 1, pp. 72–78, 1990. View at Google Scholar
  46. P. Messner, R. Christian, C. Neuninger, and G. Schulz, “Similarity of “core” structures in two different glycans of tyrosine- linked eubacterial S-layer glycoproteins,” Journal of Bacteriology, vol. 177, no. 8, pp. 2188–2193, 1995. View at Google Scholar · View at Scopus
  47. K. Zarschler, B. Janesch, S. Zayni, C. Schäffer, and P. Messner, “Construction of a gene knockout system for application in Paenibacillus alvei CCM 2051T, exemplified by the S-layer glycan biosynthesis initiation enzyme WsfP,” Applied and Environmental Microbiology, vol. 75, no. 10, pp. 3077–3085, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Zarschler, B. Janesch, M. Pabst, F. Altmann, P. Messner, and C. Schäffer, “Protein tyrosine O-glycosylation—a rather unexplored prokaryotic glycosylation system,” Glycobiology, vol. 20, no. 6, pp. 787–798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. L. O. Severina, A. A. Senyushkin, and G. I. Karavaiko, “The structure and chemical composition of the S-layer in representatives of the genus Sulfobacillus,” Microbiology (Moscow), vol. 64, no. 3, pp. 280–283, 1995. View at Google Scholar
  50. B. Brahamsha, “An abundant cell-surface polypeptide is required for swimming by the nonflagellated marine cyanobacterium Synechococcus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 13, pp. 6504–6509, 1996. View at Publisher · View at Google Scholar · View at Scopus
  51. J. McCarren, J. Heuser, R. Roth, N. Yamada, M. Martone, and B. Brahamsha, “Inactivation of swmA results in the loss of an outer cell layer in a swimming Synechococcus strain,” Journal of Bacteriology, vol. 187, no. 1, pp. 224–230, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Higuchi, Y. Murakami, K. Moriguchi, N. Ohno, H. Nakamura, and F. Yoshimura, “Localization of major, high molecular weight proteins in Bacteroides forsythus,” Microbiology and Immunology, vol. 44, no. 9, pp. 777–780, 2000. View at Google Scholar · View at Scopus
  53. M. Sabet, S.-W. Lee, R. K. Nauman, T. Sims, and H.-S. Um, “The surface (S-) layer is a virulence factor of Bacteroides forsythus,” Microbiology, vol. 149, no. 12, pp. 3617–3627, 2003. View at Google Scholar · View at Scopus
  54. J. Peters, M. Peters, F. Lottspeich, and W. Baumeister, “S-layer protein gene of Acetogenium kivui: cloning and expression in Escherichia coli and determination of the nucleotide sequence,” Journal of Bacteriology, vol. 171, no. 11, pp. 6307–6315, 1989. View at Google Scholar · View at Scopus
  55. R. Christian, P. Messner, C. Weiner, U. B. Sleytr, and G. Schulz, “Structure of a glycan from the surface-layer glycoprotein of Clostridium thermohydrosulfuricum strain L111-69,” Carbohydrate Research, vol. 176, no. 1, pp. 160–163, 1988. View at Google Scholar · View at Scopus
  56. K. Bock, J. Schuster-Kolbe, E. Altman et al., “Primary structure of the O-glycosidically linked glycan chain of the crystalline surface layer glycoprotein of Thermoanaerobacter thermohydrosulfuricus L111-69. Galactosyl tyrosine as a novel linkage unit,” The Journal of Biological Chemistry, vol. 269, no. 10, pp. 7137–7144, 1994. View at Google Scholar · View at Scopus
  57. P. Messner, R. Christian, J. Kolbe, G. Schulz, and U. B. Sleytr, “Analysis of a novel linkage unit of O-linked carbohydrates from the crystalline surface layer glycoprotein of Clostridium thermohydrosulfuricum S102-70,” Journal of Bacteriology, vol. 174, no. 7, pp. 2236–2240, 1992. View at Google Scholar · View at Scopus
  58. R. Christian, G. Schulz, J. Schuster-Kolbe et al., “Complete structure of the tyrosine-linked saccharide moiety from the surface layer glycoprotein of Clostridium thermohydrosulfuricum S102-70,” Journal of Bacteriology, vol. 175, no. 5, pp. 1250–1256, 1993. View at Google Scholar · View at Scopus
  59. E. Altman, J.-R. Brisson, S. M. Gagne, J. Kolbe, P. Messner, and U. B. Sleytr, “Structure of the glycan chain from the surface layer glycoprotein of Clostridium thermohydrosulfuricum L77-66,” Biochimica et Biophysica Acta, vol. 1117, no. 1, pp. 71–77, 1992. View at Publisher · View at Google Scholar · View at Scopus
  60. E. Altman, C. Schäffer, J.-R. Brisson, and P. Messner, “Characterization of the glycan structure of a major glycopeptide from the surface layer glycoprotein of Clostridium thermosaccharolyticum E207-71,” European Journal of Biochemistry, vol. 229, no. 1, pp. 308–315, 1995. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Schäffer, K. Dietrich, B. Unger et al., “A novel type of carbohydrate-protein linkage region in the tyrosine-bound S-layer glycan of Thermoanaerobacterium thermosaccharolyticum D120-70,” European Journal of Biochemistry, vol. 267, no. 17, pp. 5482–5492, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. E. Brechtel, M. Matuschek, A. Hellberg, E. M. Egelseer, R. Schmid, and H. Bahl, “Cell wall of Thermoanaerobacterium thermosulfurigenes EM1: isolation of its components and attachment of the xylanase XynA,” Archives of Microbiology, vol. 171, no. 3, pp. 159–165, 1999. View at Publisher · View at Google Scholar · View at Scopus
  63. P. Messner, “Prokaryotic protein glycosylation is rapidly expanding from “curiosity” to “ubiquity”,” ChemBioChem, vol. 10, no. 13, pp. 2151–2154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Messner, E. Egelseer, U. B. Sleytr, and C. Schäffer, “Surface layer glycoproteins and secondary cell wall polymers,” in Microbial Glycobiology: Structures, Relevance and Applications, A. P. Moran, P. J. Brennan, O. Holst, and M. von Itzstein, Eds., pp. 109–128, Academic Press, Elsevier, San Diego, Calif, USA, 2009. View at Google Scholar
  65. C. R. H. Raetz and C. Whitfield, “Lipopolysaccharide endotoxins,” Annual Review of Biochemistry, vol. 71, pp. 635–700, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Messner and C. Schäffer, “Prokaryotic glycoproteins,” in Progress in the Chemistry of Organic Natural Products, W. Herz, H. Falk, and G. W. Kirby, Eds., vol. 85, pp. 51–124, Springer, Wien, Austria, 2003. View at Google Scholar · View at Scopus
  67. C. Schäffer, N. Müller, R. Christian et al., “Complete glycan structure of the S-layer glycoprotein of Aneurinibacillus thermoaerophilus GS4-97,” Glycobiology, vol. 9, no. 4, pp. 407–414, 1999. View at Google Scholar · View at Scopus
  68. C. Whitfield, “Polymerases: glycan chain-length control,” Nature Chemical Biology, vol. 6, no. 6, pp. 403–404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Wugeditsch, N. E. Zachara, M. Puchberger, P. Kosma, A. A. Gooley, and P. Messner, “Structural heterogeneity in the core oligosaccharide of the S-layer glycoprotein from Aneurinibacillus thermoaerophilus DSM 10155,” Glycobiology, vol. 9, no. 8, pp. 787–795, 1999. View at Publisher · View at Google Scholar · View at Scopus
  70. C. Schäffer, T. Wugeditsch, C. Neuninger, and P. Messner, “Are S-layer glycoproteins and lipopolysaccharides related?” Microbial Drug Resistance, vol. 2, no. 1, pp. 17–23, 1996. View at Google Scholar · View at Scopus
  71. K. Steiner, G. Pohlentz, K. Dreisewerd et al., “New insights into the glycosylation of the surface layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a,” Journal of Bacteriology, vol. 188, no. 22, pp. 7914–7921, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. W. Keenleyside and C. Whitfield, “Genetics and biosynthesis of lipopolysaccharide O antigens,” in Endotoxin in Health and Disease, H. Brade, S. M. Opal, S. N. Vogel, and D.C. Morrison, Eds., pp. 331–358, Marcel Dekker, New York, NY, USA, 1999. View at Google Scholar
  73. I. W. Sutherland, “Biosynthesis and composition of gram-negative bacterial extracellular and wall polysaccharides,” Annual Review of Microbiology, vol. 39, pp. 243–270, 1985. View at Google Scholar · View at Scopus
  74. C. Whitfield and M. A. Valvano, “Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria,” Advances in Microbial Physiology, vol. 35, pp. 135–246, 1993. View at Google Scholar · View at Scopus
  75. M.-F. Giraud and J. H. Naismith, “The rhamnose pathway,” Current Opinion in Structural Biology, vol. 10, no. 6, pp. 687–696, 2000. View at Publisher · View at Google Scholar · View at Scopus
  76. G. Samuel and P. Reeves, “Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly,” Carbohydrate Research, vol. 338, no. 23, pp. 2503–2519, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. S. D. Bentley, D. M. Aanensen, A. Mavroidi et al., “Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes,” PLoS Genetics, vol. 2, no. 3, article e31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. S. J. Lee, L. K. Romana, and P. R. Reeves, “Sequence and structural analysis of the rfb (O antigen) gene cluster from a group C1 Salmonella enterica strain,” Journal of General Microbiology, vol. 138, no. 9, pp. 1843–1855, 1992. View at Google Scholar · View at Scopus
  79. T. Kalambaheti, D. M. Bulach, K. Rajakumar, and B. Adler, “Genetic organization of the lipopolysaccharide O-antigen biosynthetic locus of Leptospira borgpetersenii serovar Hardjobovis,” Microbial Pathogenesis, vol. 27, no. 2, pp. 105–117, 1999. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Hobbs and P. R. Reeves, “The JUMPstart sequence: a 39 bp element common to several polysaccharide gene clusters,” Molecular Microbiology, vol. 12, no. 5, pp. 855–856, 1994. View at Publisher · View at Google Scholar · View at Scopus
  81. R. Novotny, H. Berger, T. Schinko, P. Messner, C. Schäffer, and J. Strauss, “A temperature-sensitive expression system based on the Geobacillus stearothermophilus NRS 2004/3a sgsE surface-layer gene promoter,” Biotechnology and Applied Biochemistry, vol. 49, no. 1, pp. 35–40, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. L. Jolly and F. Stingele, “Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria,” International Dairy Journal, vol. 11, no. 9, pp. 733–745, 2001. View at Publisher · View at Google Scholar · View at Scopus
  83. K. Steiner, R. Novotny, K. Patel et al., “Functional characterization of the initiation enzyme of S-layer glycoprotein glycan biosynthesis in Geobacillus stearothermophilus NRS 2004/3a,” Journal of Bacteriology, vol. 189, no. 7, pp. 2590–2598, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. L. Wang, D. Liu, and P. R. Reeves, “C-terminal half of Salmonella enterica WbaP (RfbP) is the galactosyl-1-phosphate transferase domain catalyzing the first step of O-antigen synthesis,” Journal of Bacteriology, vol. 178, no. 9, pp. 2598–2604, 1996. View at Google Scholar · View at Scopus
  85. M. S. Saldías, K. Patel, C. L. Marolda, M. Bittner, I. Contreras, and M. A. Valvano, “Distinct functional domains of the Salmonella enterica WbaP transferase that is involved in the initiation reaction for synthesis of the O antigen subunit,” Microbiology, vol. 154, no. 2, pp. 440–453, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. B. R. Clarke, L. Cuthbertson, and C. Whitfield, “Nonreducing terminal modifications determine the chain length of polymannose O antigens of Escherichia coli and couple chain termination to polymer export via an ATP-binding cassette transporter,” The Journal of Biological Chemistry, vol. 279, no. 34, pp. 35709–35718, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. W. Wang, A. V. Perepelov, L. Feng et al., “A group of Escherichia coli and Salmonella enterica O antigens sharing a common backbone,” Microbiology, vol. 153, no. 7, pp. 2159–2167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. G. E. Allison and N. K. Verma, “Serotype-converting bacteriophages and O-antigen modification in Shigella flexneri,” Trends in Microbiology, vol. 8, no. 1, pp. 17–23, 2000. View at Publisher · View at Google Scholar · View at Scopus
  89. D. Bronner, B. R. Clarke, and C. Whitfield, “Identification of an ATP-binding cassette transport system required for translocation of lipopolysaccharide O-antigen side-chains across the cytoplasmic membrane of Klebsiella pneumoniae serotype O1,” Molecular Microbiology, vol. 14, no. 3, pp. 505–519, 1994. View at Publisher · View at Google Scholar · View at Scopus
  90. L. Cuthbertson, J. Powers, and C. Whitfield, “The C-terminal domain of the nucleotide-binding domain protein Wzt determines substrate specificity in the ATP-binding cassette transporter for the lipopolysaccharide O-antigens in Escherichia coli serotypes O8 and O9a,” The Journal of Biological Chemistry, vol. 280, no. 34, pp. 30310–30319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. L. Cuthbertson, M. S. Kimber, and C. Whitfield, “Substrate binding by a bacterial ABC transporter involved in polysaccharide export,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 49, pp. 19529–19534, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Faridmoayer, M. A. Fentabil, D. C. Mills, J. S. Klassen, and M. F. Feldman, “Functional characterization of bacterial oligosaccharyltransferases involved in O-linked protein glycosylation,” Journal of Bacteriology, vol. 189, no. 22, pp. 8088–8098, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Faridmoayer, M. A. Fentabil, M. F. Haurat et al., “Extreme substrate promiscuity of the Neisseria oligosaccharyl transferase involved in protein O-glycosylation,” The Journal of Biological Chemistry, vol. 283, no. 50, pp. 34596–34604, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Wacker, M. F. Feldman, N. Callewaert et al., “Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 18, pp. 7088–7093, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. N. Maita, J. Nyirenda, M. Igura, J. Kamishikiryo, and D. Kohda, “Comparative structural biology of eubacterial and archaeal oligosaccharyltransferases,” The Journal of Biological Chemistry, vol. 285, no. 7, pp. 4941–4950, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. P. M. Power, K. L. Seib, and M. P. Jennings, “Pilin glycosylation in Neisseria meningitidis occurs by a similar pathway to wzy-dependent O-antigen biosynthesis in Escherichia coli,” Biochemical and Biophysical Research Communications, vol. 347, no. 4, pp. 904–908, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. G. L. Blatch and M. Lässle, “The tetratricopeptide repeat: a structural motif mediating protein-protein interactions,” BioEssays, vol. 21, no. 11, pp. 932–939, 1999. View at Google Scholar · View at Scopus
  98. L. D. D'Andrea and L. Regan, “TPR proteins: the versatile helix,” Trends in Biochemical Sciences, vol. 28, no. 12, pp. 655–662, 2003. View at Publisher · View at Google Scholar · View at Scopus
  99. C. Whitfield and I. L. Mainprize, “TPR motifs: hallmarks of a new polysaccharide export scaffold,” Structure, vol. 18, no. 2, pp. 151–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. N. Kido, T. Sugiyama, T. Yokochi, H. Kobayashi, and Y. Okawa, “Synthesis of Escherichia coli O9a polysaccharide requires the participation of two domains of WbdA, a mannosyltransferase encoded within the wb gene cluster,” Molecular Microbiology, vol. 27, no. 6, pp. 1213–1221, 1998. View at Publisher · View at Google Scholar · View at Scopus
  101. B. R. Clarke, L. K. Greenfield, C. Bouwman, and C. Whitfield, “Coordination of polymerization, chain termination, and export in assembly of the Escherichia coli lipopolysaccharide O9a antigen in an ATP-binding cassette transporter-dependent pathway,” The Journal of Biological Chemistry, vol. 284, no. 44, pp. 30662–30672, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Pfoestl, A. Hofinger, P. Kosma, and P. Messner, “Biosynthesis of dTDP-3-acetamido-3,6-dideoxy-α-D-galactose in Aneurinibacillus thermoaerophilus L420-91T,” The Journal of Biological Chemistry, vol. 278, no. 29, pp. 26410–26417, 2003. View at Publisher · View at Google Scholar · View at Scopus
  103. M. L. Davis, J. B. Thoden, and H. M. Holden, “The X-ray structure of dTDP-4-keto-6-deoxy-D-glucose-3,4-ketoisomerase,” The Journal of Biological Chemistry, vol. 282, no. 26, pp. 19227–19236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Pföstl, S. Zayni, A. Hofinger, P. Kosma, C. Schäffer, and P. Messner, “Biosynthesis of dTDP-3-acetamido-3,6-dideoxy-α-D-glucose,” Biochemical Journal, vol. 410, no. 1, pp. 187–194, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. J. B. Thoden, C. Schäffer, P. Messner, and H. M. Holden, “Structural analysis of QdtB, an aminotransferase required for the biosynthesis of dTDP-3-acetamido-3,6-dideoxy-α-D-glucose,” Biochemistry, vol. 48, no. 7, pp. 1553–1561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. J. B. Thoden, P. D. Cook, C. Schäffer, P. Messner, and H. M. Holden, “Structural and functional studies of QdtC: an N-acetyltransferase required for the biosynthesis of dTDP-3-acetamido-3,6-dideoxy-R-D-glucose,” Biochemistry, vol. 48, no. 12, pp. 2699–2709, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. E. S. Rangarajan, K. M. Ruane, T. Sulea et al., “Structure and active site residues of PglD, an N-acetyltransferase from the bacillosamine synthetic pathway required for N-glycan synthesis in Campylobacter jejuni,” Biochemistry, vol. 47, no. 7, pp. 1827–1836, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. N. B. Olivier and B. Imperiali, “Crystal structure and catalytic mechanism of PglD from Campylobacter jejuni,” The Journal of Biological Chemistry, vol. 283, no. 41, pp. 27937–27946, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. K. Steiner, A. Wojciechowska, C. Schäffer, and J. H. Naismith, “Purification, crystallization and preliminary crystallographic analysis of WsaF, an essential rhamnosyltransferase from Geobacillus stearothermophilus,” Acta Crystallographica Section F, vol. 64, no. 12, pp. 1163–1165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. K. Steiner, G. Hagelueken, P. Messner, C. Schäffer, and J. H. Naismith, “Structural basis of substrate binding in WsaF, a rhamnosyltransferase from Geobacillus stearothermophilus,” Journal of Molecular Biology, vol. 397, no. 2, pp. 436–447, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. L. L. Lairson, B. Henrissat, G. J. Davies, and S. G. Withers, “Glycosyl transferases: structures, functions, and mechanisms,” Annual Review of Biochemistry, vol. 77, pp. 521–555, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. M. Graninger, B. Kneidinger, K. Bruno, A. Scheberl, and P. Messner, “Homologs of the Rml enzymes from Salmonella enterica are responsible for dTDP-β-L-rhamnose biosynthesis in the gram-positive thermophile Aneurinibacillus thermoaerophilus DSM 10155,” Applied and Environmental Microbiology, vol. 68, no. 8, pp. 3708–3715, 2002. View at Publisher · View at Google Scholar · View at Scopus
  113. U. B. Sleytr, E.-M. Egelseer, N. Ilk et al., “Nanobiotechnological applications of S layers,” in Prokaryotic Cell Wall Compounds—Structure and Biochemistry, H. König, H. Claus, and A. Varma, Eds., pp. 459–481, Springer, Heidelberg, Germany, 2010. View at Google Scholar