Table of Contents Author Guidelines Submit a Manuscript
International Journal of Microbiology
Volume 2011, Article ID 607575, 9 pages
http://dx.doi.org/10.1155/2011/607575
Review Article

Burkholderia cepacia Complex: Emerging Multihost Pathogens Equipped with a Wide Range of Virulence Factors and Determinants

IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Received 11 May 2010; Accepted 2 June 2010

Academic Editor: Max Teplitski

Copyright © 2011 Sílvia A. Sousa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Mahenthiralingam, T. A. Urban, and J. B. Goldberg, “The multifarious, multireplicon Burkholderia cepacia complex,” Nature Reviews Microbiology, vol. 3, no. 2, pp. 144–156, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Chiarini, A. Bevivino, C. Dalmastri, S. Tabacchioni, and P. Visca, “Burkholderia cepacia complex species: health hazards and biotechnological potential,” Trends in Microbiology, vol. 14, no. 6, pp. 277–286, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Bontemps, G. N. Elliott, M. F. Simon et al., “Burkholderia species are ancient symbionts of legumes,” Molecular Ecology, vol. 19, no. 1, pp. 44–52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. J. LiPuma, T. Spilker, T. Coenye, and C. F. Gonzalez, “An epidemic Burkholderia cepacia complex strain identified in soil,” Lancet, vol. 359, no. 9322, pp. 2002–2003, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Ratjen and G. Döring, “Cystic fibrosis,” Lancet, vol. 361, no. 9358, pp. 681–689, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. J. B. Lyczak, C. L. Cannon, and G. B. Pier, “Lung infections associated with cystic fibrosis,” Clinical Microbiology Reviews, vol. 15, no. 2, pp. 194–222, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. R. B. Johnston Jr., “Clinical aspects of chronic granulomatous disease,” Current Opinion in Hematology, vol. 8, no. 1, pp. 17–22, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Mann, D. Ben-David, A. Zlotkin et al., “An outbreak of Burkholderia cenocepacia bacteremia in immunocompromised oncology patients,” Infection, vol. 38, no. 3, pp. 187–194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Marioni, R. Rinaldi, G. Ottaviano, R. Marchese-Ragona, M. Savastano, and A. Staffieri, “Cervical necrotizing fasciitis: a novel clinical presentation of Burkholderia cepacia infection,” Journal of Infection, vol. 53, no. 5, pp. e219–e222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Vanlaere, J. J. LiPuma, A. Baldwin et al., “Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov., and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex,” International Journal of Systematic and Evolutionary Microbiology, vol. 58, no. 7, pp. 1580–1590, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Vanlaere, A. Baldwin, D. Gevers et al., “Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov,” International Journal of Systematic and Evolutionary Microbiology, vol. 59, no. 1, pp. 102–111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Mahenthiralingam, A. Baldwin, and C. G. Dowson, “Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology,” Journal of Applied Microbiology, vol. 104, no. 6, pp. 1539–1551, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Vandamme, B. Holmes, M. Vancanneyt et al., “Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov,” International Journal of Systematic Bacteriology, vol. 47, no. 4, pp. 1188–1200, 1997. View at Google Scholar · View at Scopus
  14. P. Vandamme, B. Holmes, T. Coenye et al., “Burkholderia cenocepacia sp. nov.—a new twist to an old story,” Research in Microbiology, vol. 154, no. 2, pp. 91–96, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Vandamme, E. Mahenthiralingam, B. Holmes et al., “Identification and population structure of Burkholderia stabilis sp. nov. (formerly Burkholderia cepacia genomovar IV),” Journal of Clinical Microbiology, vol. 38, no. 3, pp. 1042–1047, 2000. View at Google Scholar · View at Scopus
  16. K. Vermis, T. Coenye, J. J. LiPuma, E. Mahenthiralingam, H. J. Nelis, and P. Vandamme, “Proposal to accommodate Burkholderia cepacia genomovar VI as Burkholderia dolosa sp. nov,” International Journal of Systematic and Evolutionary Microbiology, vol. 54, no. 3, pp. 689–691, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Coenye, P. Vandamme, J. R. W. Govan, and J. J. Lipuma, “Taxonomy and identification of the Burkholderia cepacia complex,” Journal of Clinical Microbiology, vol. 39, no. 10, pp. 3427–3436, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Vandamme, D. Henry, T. Coenye et al., “Burkholderia anthina sp. nov. and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools,” FEMS Immunology and Medical Microbiology, vol. 33, no. 2, pp. 143–149, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Drevinek, S. Vosahlikova, K. Dedeckova, O. Cinek, and E. Mahenthiralingam, “Direct culture-independent strain typing of Burkholderia cepacia complex in sputum samples from patients with cystic fibrosis,” Journal of Clinical Microbiology, vol. 48, no. 5, pp. 1888–1891, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Y. Larsen, T. L. Stull, and J. L. Burns, “Marked phenotypic variability in Pseudomonas cepacia isolated from a patient with cystic fibrosis,” Journal of Clinical Microbiology, vol. 31, no. 4, pp. 788–792, 1993. View at Google Scholar · View at Scopus
  21. A. Baldwin, E. Mahenthiralingam, K. M. Thickett et al., “Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex,” Journal of Clinical Microbiology, vol. 43, no. 9, pp. 4665–4673, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Isles, I. Maclusky, and M. Corey, “Pseudomonas cepacia infection in cystic fibrosis: an emerging problem,” Journal of Pediatrics, vol. 104, no. 2, pp. 206–210, 1984. View at Google Scholar · View at Scopus
  23. J. R. W. Goven, P. H. Brown, J. Maddison et al., “Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis,” Lancet, vol. 342, no. 8862, pp. 15–19, 1993. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. Jones, M. E. Dodd, J. R. W. Govan et al., “Burkholderia cenocepacia and Burkholderia multivorans: influence on survival in cystic fibrosis,” Thorax, vol. 59, no. 11, pp. 948–951, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. J. J. Lipuma, S. E. Dasen, D. W. Nielson, R. C. Stern, and T. L. Stull, “Person-to-person transmission of Pseudomonas cepacia between patients with cystic fibrosis,” Lancet, vol. 336, no. 8723, pp. 1094–1096, 1990. View at Google Scholar · View at Scopus
  26. R. Biddick, T. Spilker, A. Martin, and J. J. LiPuma, “Evidence of transmission of Burkholderia cepacia, Burkholderia multivorans and Burkholderia dolosa among persons with cystic fibrosis,” FEMS Microbiology Letters, vol. 228, no. 1, pp. 57–62, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. W. M. Johnson, S. D. Tyler, and K. R. Rozee, “Linkage analysis of geographic and clinical clusters in Pseudomonas cepacia infections by multilocus enzyme electrophoresis and ribotyping,” Journal of Clinical Microbiology, vol. 32, no. 4, pp. 924–930, 1994. View at Google Scholar · View at Scopus
  28. J. S. Chen, K. A. Witzmann, T. Spilker, R. J. Fink, and J. J. LiPuma, “Endemicity and inter-city spread of Burkholderia cepacia genomovar III in cystic fibrosis,” Journal of Pediatrics, vol. 139, no. 5, pp. 643–649, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. D. P. Speert, D. Henry, P. Vandamme, M. Corey, and E. Mahenthiralingam, “Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada,” Emerging Infectious Diseases, vol. 8, no. 2, pp. 181–187, 2002. View at Google Scholar · View at Scopus
  30. F. Festini, R. Buzzetti, C. Bassi et al., “Isolation measures for prevention of infection with respiratory pathogens in cystic fibrosis: a systematic review,” Journal of Hospital Infection, vol. 64, no. 1, pp. 1–6, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. J. R. W. Govan, A. R. Brown, and A. M. Jones, “Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection,” Future Microbiology, vol. 2, no. 2, pp. 153–164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. M. V. Cunha, A. Pinto-de-Oliveira, L. Meirinhos-Soares et al., “Exceptionally high representation of Burkholderia cepacia among B. cepacia complex isolates recovered from the major Portuguese cystic fibrosis center,” Journal of Clinical Microbiology, vol. 45, no. 5, pp. 1628–1633, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Reik, T. Spilker, and J. J. LiPuma, “Distribution of Burkholderia cepacia complex species among isolates recovered from persons with or without cystic fibrosis,” Journal of Clinical Microbiology, vol. 43, no. 6, pp. 2926–2928, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. S. G. Geftic, H. Heymann, and F. W. Adair, “Fourteen year survival of Pseudomonas cepacia in a salts solution preserved with benzalkonium chloride,” Applied and Environmental Microbiology, vol. 37, no. 3, pp. 505–510, 1979. View at Google Scholar · View at Scopus
  35. J. H. Leitão, S. A. Sousa, M. V. Cunha et al., “Variation of the antimicrobial susceptibility profiles of Burkholderia cepacia complex clonal isolates obtained from chronically infected cystic fibrosis patients: a five-year survey in the major Portuguese treatment center,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 27, no. 11, pp. 1101–1111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. A. M. George, P. M. Jones, and P. G. Middleton, “Cystic fibrosis infections: treatment strategies and prospects,” FEMS Microbiology Letters, vol. 300, no. 2, pp. 153–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. R. M. Baird, H. Brown, A. W. Smith, and M. L. Watson, “Burkholderia cepacia is resistant to the antimicrobial activity of airway epithelial cells,” Immunopharmacology, vol. 44, no. 3, pp. 267–272, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. V. S. Cooper, S. H. Vohr, S. C. Wrocklage, and P. J. Hatcher, “Why genes evolve faster on secondary chromosomes in bacteria,” PLoS Computational Biology, vol. 6, no. 4, Article ID e1000732, 2010. View at Google Scholar
  39. M. T. G. Holden, H. M. B. Seth-Smith, L. C. Crossman et al., “The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients,” Journal of Bacteriology, vol. 91, no. 1, pp. 261–277, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Baldwin, P. A. Sokol, J. Parkhill, and E. Mahenthiralingam, “The Burkholderia cepacia epidemic strain marker is part of a novel genomic island encoding both virulence and metabolism-associated genes in Burkholderia cenocepacia,” Infection and Immunity, vol. 72, no. 3, pp. 1537–1547, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. J. J. Dennis and G. J. Zylstra, “Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes,” Applied and Environmental Microbiology, vol. 64, no. 7, pp. 2710–2715, 1998. View at Google Scholar · View at Scopus
  42. L. M. Moreira, P. A. Videira, S. A. Sousa, J. H. Leitão, M. V. Cunha, and I. Sá-Correia, “Identification and physical organization of the gene cluster involved in the biosynthesis of Burkholderia cepacia complex exopolysaccharide,” Biochemical and Biophysical Research Communications, vol. 312, no. 2, pp. 323–333, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Cescutti, M. Bosco, F. Picotti et al., “Structural study of the exopolysaccharide produced by a clinical isolate of Burkholderia cepacia,” Biochemical and Biophysical Research Communications, vol. 273, no. 3, pp. 1088–1094, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. B.-A. D. Conway, K. K. Chu, J. Bylund, E. Altman, and D. P. Speert, “Production of exopolysaccharide by Burkholderia cenocepacia results in altered cell-surface interactions and altered bacterial clearance in mice,” Journal of Infectious Diseases, vol. 190, no. 5, pp. 957–966, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Bylund, L.-A. Burgess, P. Cescutti, R. K. Ernst, and D. P. Speert, “Exopolysaccharides from Burkholderia cenocepacia inhibit neutrophil chemotaxis and scavenge reactive oxygen species,” Journal of Biological Chemistry, vol. 281, no. 5, pp. 2526–2532, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. S. A. Sousa, M. Ulrich, A. Bragonzi et al., “Virulence of Burkholderia cepacia complex strains in gp91phox/ mice,” Cellular Microbiology, vol. 9, no. 12, pp. 2817–2825, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. M. V. Cunha, S. A. Sousa, J. H. Leitão, L. M. Moreira, P. A. Videira, and I. Sá-Correia, “Studies on the involvement of the exopolysaccharide produced by cystic fibrosis-associated isolates of the Burkholderia cepacia complex in biofilm formation and in persistence of respiratory infections,” Journal of Clinical Microbiology, vol. 42, no. 7, pp. 3052–3058, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. B.-A. D. Conway, V. Venu, and D. P. Speert, “Biofilm formation and acyl homoserine lactone production in the Burkholderia cepacia complex,” Journal of Bacteriology, vol. 184, no. 20, pp. 5678–5685, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Dales, W. Ferris, K. Vandemheen, and S. D. Aaron, “Combination antibiotic susceptibility of biofilm-grown Burkholderia cepacia and Pseudomonas aeruginosa isolated from patients with pulmonary exacerbations of cystic fibrosis,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 28, no. 10, pp. 1275–1279, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. S. A. Sousa, C. G. Ramos, L. M. Moreira, and J. H. Leitão, “The hfq gene is required for stress resistance and full virulence of Burkholderia cepacia to the nematode Caenorhabditis elegans,” Microbiology, vol. 156, no. 3, pp. 896–908, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Valentin-Hansen, M. Eriksen, and C. Udesen, “The bacterial Sm-like protein Hfq: a key player in RNA transactions,” Molecular Microbiology, vol. 51, no. 6, pp. 1525–1533, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Coenye, P. Drevinek, E. Mahenthiralingam et al., “Identification of putative noncoding RNA genes in the Burkholderia cenocepacia J2315 genome,” FEMS Microbiology Letters, vol. 276, no. 1, pp. 83–92, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. S. A. Sousa, C. G. Ramos, F. Almeida et al., “Burkholderia cenocepacia J2315 acyl carrier protein: a potential target for antimicrobials' development?” Microbial Pathogenesis, vol. 45, no. 5-6, pp. 331–336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. D. M. Byers and H. Gong, “Acyl carrier protein: structure-function relationships in a conserved multifunctional protein family,” Biochemistry and Cell Biology, vol. 85, no. 6, pp. 649–662, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. S. W. White, J. Zheng, Y.-M. Zhang, and C. O. Rock, “The structural biology of type II fatty acid biosynthesis,” Annual Review of Biochemistry, vol. 74, pp. 791–831, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. C. G. Ramos, S. A. Sousa, A. M. Grilo, L. Eberl, and J. H. Leitão, “The Burkholderia cenocepacia K56-2 pleiotropic regulator Pbr, is required for stress resistance and virulence,” Microbial Pathogenesis, vol. 48, no. 5, pp. 168–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. T. A. Hunt, C. Kooi, P. A. Sokol, and M. A. Valvano, “Identification of Burkholderia cenocepacia genes required for bacterial survival in vivo,” Infection and Immunity, vol. 72, no. 7, pp. 4010–4022, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. S. P. Bernier and P. A. Sokol, “Use of suppression-subtractive hybridization to identify genes in the Burkholderia cepacia complex that are unique to Burkholderia cenocepacia,” Journal of Bacteriology, vol. 187, no. 15, pp. 5278–5291, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. D. R. Yoder-Himes, P. S. G. Chain, Y. Zhu et al., “Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 10, pp. 3976–3981, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. M. D. Lefebre and M. A. Valvano, “Construction and evaluation of plasmid vectors optimized for constitutive and regulated gene expression in Burkholderia cepacia complex isolates,” Applied and Environmental Microbiology, vol. 68, no. 12, pp. 5956–5964, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. S. T. Cardona and M. A. Valvano, “An expression vector containing a rhamnose-inducible promoter provides tightly regulated gene expression in Burkholderia cenocepacia,” Plasmid, vol. 54, no. 3, pp. 219–228, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Dubarry, W. Du, D. Lane, and F. Pasta, “Improved electrotransformation and decreased antibiotic resistance of the cystic fibrosis pathogen Burkholderia cenocepacia strain J2315,” Applied and Environmental Microbiology, vol. 76, no. 4, pp. 1095–1102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. K. A. Datsenko and B. L. Wanner, “One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 12, pp. 6640–6645, 2000. View at Publisher · View at Google Scholar · View at Scopus
  64. B. Jia, J.-K. Yang, W.-S. Liu, X. Li, and Y.-J. Yan, “Homologous overexpression of a lipase from Burkholderia cepacia using the lambda Red recombinase system,” Biotechnology Letters, vol. 32, no. 4, pp. 521–526, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. T. A. Urban, J. B. Goldberg, J. F. Forstner, and U. S. Sajjan, “Cable pili and the 22-kilodalton adhesin are required for Burkholderia cenocepacia binding to and transmigration across the squamous epithelium,” Infection and Immunity, vol. 73, no. 9, pp. 5426–5437, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. T. A. Urban, A. Griffith, A. M. Torok, M. E. Smolkin, J. L. Burns, and J. B. Goldberg, “Contribution of Burkholderia cenocepacia flagella to infectivity and inflammation,” Infection and Immunity, vol. 72, no. 9, pp. 5126–5134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Tomich, A. Griffith, C. A. Herfst, J. L. Burns, and C. D. Mohr, “Attenuated virulence of a Burkholderia cepacia type III secretion mutant in a murine model of infection,” Infection and Immunity, vol. 71, no. 3, pp. 1405–1415, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. D. F. Aubert, R. S. Flannagan, and M. A. Valvano, “A novel sensor kinase-response regulator hybrid controls biofilm formation and type VI secretion system activity in Burkholderia cenocepacia,” Infection and Immunity, vol. 76, no. 5, pp. 1979–1991, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. A. D. Vinion-Dubiel and J. B. Goldberg, “Lipopolysaccharide of Burkholderia cepacia complex,” Journal of Endotoxin Research, vol. 9, no. 4, pp. 201–213, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. M. S. Thomas, “Iron acquisition mechanisms of the Burkholderia cepacia complex,” BioMetals, vol. 20, no. 3-4, pp. 431–452, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. C. Kooi, B. Subsin, R. Chen, B. Pohorelic, and P. A. Sokol, “Burkholderia cenocepacia ZmpB is a broad-specificity zinc metalloprotease involved in virulence,” Infection and Immunity, vol. 74, no. 7, pp. 4083–4093, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. M. L. Hutchison, I. R. Poxton, and J. R. W. Govan, “Burkholderia cepacia produces a hemolysin that is capable of inducing apoptosis and degranulation of mammalian phagocytes,” Infection and Immunity, vol. 66, no. 5, pp. 2033–2039, 1998. View at Google Scholar · View at Scopus
  73. P. A. Sokol, R. Malott, K. Riedel, and L. Eberl, “Communication systems in the genus Burkholderia: global regulators and targets for novel antipathogenic drugs,” Future Microbiology, vol. 2, no. 5, pp. 555–563, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. Y. Deng, C. Boon, L. Eberl, and L.-H. Zhang, “Differential modulation of Burkholderia cenocepacia virulence and energy metabolism by the quorum-sensing signal BDSF and its synthase,” Journal of Bacteriology, vol. 191, no. 23, pp. 7270–7278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. J. H. Leitão, S. A. Sousa, A. S. Ferreira, C. G. Ramos, I. N. Silva, and L. M. Moreira, “Pathogenicity, virulence factors, and strategies to fight against Burkholderia cepacia complex pathogens and related species,” Applied Microbiology and Biotechnology, vol. 87, no. 1, pp. 31–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. R. S. Flannagan, D. Aubert, C. Kooi, P. A. Sokol, and M. A. Valvano, “Burkholderia cenocepacia requires a periplasmic HtrA protease for growth under thermal and osmotic stress and for survival in vivo,” Infection and Immunity, vol. 75, no. 4, pp. 1679–1689, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. K. E. Maloney and M. A. Valvano, “The mgtC gene of Burkholderia cenocepacia is required for growth under magnesium limitation conditions and intracellular survival in macrophages,” Infection and Immunity, vol. 74, no. 10, pp. 5477–5486, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. M. S. Saldías, J. Lamothe, R. Wu, and M. A. Valvano, “Burkholderia cenocepacia requires the RpoN sigma factor for biofilm formation and intracellular trafficking within macrophages,” Infection and Immunity, vol. 76, no. 3, pp. 1059–1067, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. M. S. Saldías and M. A. Valvano, “Interactions of Burkholderia cenocepacia and other Burkholderia cepacia complex bacteria with epithelial and phagocytic cells,” Microbiology, vol. 155, no. 9, pp. 2809–2817, 2009. View at Publisher · View at Google Scholar · View at Scopus