Table of Contents Author Guidelines Submit a Manuscript
International Journal of Microbiology
Volume 2011 (2011), Article ID 972494, 10 pages
http://dx.doi.org/10.1155/2011/972494
Research Article

Adhesion of Pathogenic Bacteria to Food Contact Surfaces: Influence of pH of Culture

1Food Research and Development Centre, Agri-Food and Agriculture Canada, 3600 Casavant Boulevard-West, St-Hyacinthe, QC, Canada J2S 1A2
2Department of Science and Nutrition, Laval University, Quebec, QC, Canada G1K 7P4

Received 26 May 2010; Revised 1 September 2010; Accepted 15 September 2010

Academic Editor: Jorge H. Leitao

Copyright © 2011 Akier Assanta Mafu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. I. Loeb and R. A. Neihof, “Marine conditioning films,” in Applied Chemistry at Protein Interfaces, R. E. Baier, Ed., vol. 145 of Advances Chemical Series, pp. 319–335, American Chemical Society, 1975. View at Google Scholar
  2. B. Carpentier and O. Cerf, “Biofilms and their consequences, with particular reference to hygiene in the food industry,” Journal of Applied Bacteriology, vol. 75, no. 6, pp. 499–511, 1993. View at Google Scholar · View at Scopus
  3. G. A. McFeters, M. J. Bazin, J. D. Bryers et al., “Biofilm development and its consequences,” in Microbial Adhesion and Aggregation, K. C. Marshall, Ed., pp. 109–124, Springer, Berlin, Germany, 1984. View at Google Scholar
  4. R. F. Mueller, “Bacterial transport and colonization in low nutrient environments,” Water Research, vol. 30, no. 11, pp. 2681–2690, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Faille, C. Jullien, F. Fontaine, M.-N. Bellon-Fontaine, C. Slomianny, and T. Benezech, “Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: Role of surface hydrophobicity,” Canadian Journal of Microbiology, vol. 48, no. 8, pp. 728–738, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Jullien, T. Bénézech, B. Carpentier, V. Lebret, and C. Faille, “Identification of surface characteristics relevant to the hygienic status of stainless steel for the food industry,” Journal of Food Engineering, vol. 56, no. 1, pp. 77–87, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. D. R. Korber, J. R. Lawrence, B. Sutton, and D. E. Caldwell, “Effect of laminar flow velocity on the kinetics of surface recolonization by Mot+ and Mot-Pseudomonas fluorescens,” Microbial Ecology, vol. 18, no. 1, pp. 1–19, 1989. View at Publisher · View at Google Scholar
  8. J-C. Cartonné and R. Tournier, “Corrosion et anticorrosion des matériaux métalliques utilisés dans les équipements et les ateliers bio-industriels,” in Nettoyage, Désinfection et Hygiène dans les Bio-Industries, J.-Y. Leveau, M. Bouix, J.-Y. Leveau, and M. Bouix, Eds., p. 84, Tec & Doc, Paris, France, 1999. View at Google Scholar
  9. M. Fletcher, “The effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene,” Canadian Journal of Microbiology, vol. 23, no. 1, pp. 1–6, 1977. View at Google Scholar · View at Scopus
  10. J. W. Foster and H. K. Hall, “Adaptive acidification tolerance response of Salmonella typhimurium,” Journal of Bacteriology, vol. 172, no. 2, pp. 771–778, 1990. View at Google Scholar · View at Scopus
  11. I. Giovannacci, G. Ermel, G. Salvat, J. L. Vendeuvre, and M. N. Bellon-Fontaine, “Physicochemical surface properties of five Listeria monocytogenes strains from a pork-processing environment in relation to serotypes, genotypes and growth temperature,” Journal of Applied Microbiology, vol. 88, no. 6, pp. 992–1000, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Gross, S. E. Cramton, F. Götz, and A. Peschel, “Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces,” Infection and Immunity, vol. 69, no. 5, pp. 3423–3426, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Anwar, M. K. Dasgupta, and J. W. Costerton, “Testing the susceptibility of bacteria in biofilms to antibacterial agents,” Antimicrobial Agents and Chemotherapy, vol. 34, no. 11, pp. 2043–2046, 1990. View at Google Scholar · View at Scopus
  14. H. Park, Y.-C. Hung, and C. Kim, “Effectiveness of electrolyzed water as a sanitizer for treating different surfaces,” Journal of Food Protection, vol. 65, no. 8, pp. 1276–1280, 2002. View at Google Scholar · View at Scopus
  15. P. Chavant, B. Martinie, T. Meylheuc, M.-N. Bellon-Fontaine, and M. Hebraud, “Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases,” Applied and Environmental Microbiology, vol. 68, no. 2, pp. 728–737, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. CDC. 2002, “Preliminary foodnet data on the incidence of foodborne illnesses—Selected sites, United States,” Morbidity and Mortality Weekly Report, vol. 51, no. 15, pp. 325–329, 2002. View at Google Scholar · View at Scopus
  17. A. A. Mafu, M. Pitre, and S. Sirois, “Real-time PCR as a tool for detection of pathogenic bacteria on contaminated food contact surfaces by using a single enrichment medium,” Journal of Food Protection, vol. 72, no. 6, pp. 1310–1314, 2009. View at Google Scholar · View at Scopus
  18. A. A. Mafu, D. Roy, and K. Machika, “Efficiency of disinfecting agents to destroy Listeria monocytogenes, Yersinia enterocolitica and Staphylococcus aureus on a contaminated surface,” Dairy, Food and Environmental Sanitation, vol. 16, no. 7, pp. 426–430, 1996. View at Google Scholar
  19. A. A. Mafu, D. Roy, J. Goulet, and L. Savoie, “Characterization of physicochemical forces involved in adhesion of Listeria monocytogenes to surfaces,” Applied and Environmental Microbiology, vol. 57, no. 7, pp. 1969–1973, 1991. View at Google Scholar · View at Scopus
  20. C. J. Van Oss, M. K. Chaudhury, and R. J. Good, “Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems,” Chemical Reviews, vol. 88, no. 6, pp. 927–941, 1988. View at Google Scholar · View at Scopus
  21. H. C. van der Mei, R. Bos, and H. J. Busscher, “A reference guide to microbial cell surface hydrophobicity based on contact angles,” Colloids and Surfaces B, vol. 11, no. 4, pp. 213–221, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. A. A. Mafu, D. Roy, J. Goulet, and P. Magny, “Attachment of Listeria monocytogenes to stainless steel, glass, polypropylene, and rubber surfaces after short contact times,” Journal of Food Protection, vol. 53, no. 9, pp. 742–746, 1990. View at Google Scholar
  23. U. Husmark and U. Ronner, “Forces involved in adhesion of Bacillus cereus spores to solid surfaces under different environmental conditions,” Journal of Applied Bacteriology, vol. 69, no. 4, pp. 557–562, 1990. View at Google Scholar · View at Scopus
  24. P. Herald and E. A Zottola, “Attachment of Listeria monocytogenes to stainless steel surfaces at various temperatures and pH values,” Journal of Food Science, vol. 53, no. 5, pp. 1549–1552, 1988. View at Google Scholar
  25. A. L. Cookson, W. A. Cooley, and M. J. Woodward, “The role of type 1 and curli fimbriae of Shiga toxin-producing Escherichia coli in adherence to abiotic surfaces,” International Journal of Medical Microbiology, vol. 292, no. 3-4, pp. 195–205, 2002. View at Google Scholar · View at Scopus
  26. A. C. L. Wong, “Influence of culture conditions on biofilm formation by Escherichia coli O157:H7,” International Journal of Food Microbiology, vol. 26, no. 2, pp. 147–164, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Harkes, H. C. van der Mei, P. G. Rouxhet, J. Dankert, H. J. Busscher, and J. Feijen, “Physicochemical characterization of Escherichia coli—a comparison with gram-positive bacteria,” Cell Biochemistry and Biophysics, vol. 20, no. 1, pp. 17–32, 1992. View at Publisher · View at Google Scholar · View at Scopus
  28. M. A. Assanta, D. Roy, M.-J. Lemay, and D. Montpetit, “Evidence for Escherichia coli O157:H7 attachment to water distribution pipe materials by scanning electron microscopy,” Journal of Food Protection, vol. 65, no. 12, pp. 1970–1975, 2002. View at Google Scholar · View at Scopus
  29. P. Gilbert, D. J. Evans, E. Evans, I. G. Duguid, and M. R. W. Brown, “Surface characteristics and adhesion of Escherichia coli and Staphylococcus epidermidis,” Journal of Applied Bacteriology, vol. 71, no. 1, pp. 72–77, 1991. View at Google Scholar · View at Scopus
  30. B. E. Brooker, “Surface coat transformation and capsule formation by Leuconostoc mesenteroides NCDO 523 in the presence of sucrose,” Archives of Microbiology, vol. 111, no. 1-2, pp. 99–104, 1976. View at Google Scholar · View at Scopus
  31. S. K. Hood and E. A. Zottola, “Adherence to stainless steel by foodborne microorganisms during growth in model food systems,” International Journal of Food Microbiology, vol. 37, no. 2-3, pp. 145–153, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. M.-N. Bellon-Fontaine, N. Mozes, H. C. van der Mei et al., “A comparison of thermodynamic approaches to predict the adhesion of dairy microorganisms to solid substrata,” Cell Biophysics, vol. 17, no. 1, pp. 93–106, 1990. View at Google Scholar · View at Scopus
  33. R. Briandet, T. Meylheuc, C. Maher, and M. N. Bellon-Fontaine, “Listeria monocytogenes Scott A: Cell surface charge, hydrophobicity, and electron donor and acceptor characteristics under different environmental growth conditions,” Applied and Environmental Microbiology, vol. 65, no. 12, pp. 5328–5333, 1999. View at Google Scholar · View at Scopus
  34. R. J. Rowbury, N. H. Hussain, and M. Goodson, “Extracellular proteins and other components as obligate intermediates in the induction of a range of acid tolerance and sensitisation responses in Escherichia coli,” FEMS Microbiology Letters, vol. 166, no. 2, pp. 283–288, 1998. View at Google Scholar · View at Scopus
  35. C. Vuong, H. L. Saenz, F. Gotz, and M. Otto, “Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus,” Journal of Infectious Diseases, vol. 182, no. 6, pp. 1688–1693, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. D. R. Korber, J. R. Lawrence, and D. E. Caldwell, “Effect of motility on surface colonization and reproductive success of Pseudomonas fluorescens in dual-dilution continuous culture and batch culture systems,” Applied and Environmental Microbiology, vol. 60, no. 5, pp. 1421–1429, 1994. View at Google Scholar · View at Scopus
  37. J. W. McClaine and R. M. Ford, “Characterizing the adhesion of motile and nonmotile Escherichia coli to a glass surface using a parallel-plate flow chamber,” Biotechnology and Bioengineering, vol. 78, no. 2, pp. 179–189, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. C. M. Brown, D. C. Ellwood, and J. R. Hunter, “Growth of bacteria at surfaces: Influence of nutrient limitation,” FEMS Microbioogy Letters, vol. 1, no. 3, pp. 163–166, 1977. View at Google Scholar · View at Scopus
  39. M. F. A. Bal’a, I. D. Jamilah, and D. L. Marshall, “Attachment of Aeromonas hydrophila to stainless steel surfaces,” Dairy Food and Environmental Sanitation, vol. 18, no. 10, pp. 1240–1247, 1998. View at Google Scholar
  40. M. A. Assanta, D. Roy, M.-J. Lemay, and D. Montpetit, “Attachment of Arcobacter butzleri, a new waterborne pathogen, to water distribution pipe surfaces,” Journal of Food Protection, vol. 65, no. 8, pp. 1240–1247, 2002. View at Google Scholar · View at Scopus
  41. C.-T. Huang, F. P. Yu, G. A. McFeters, and P. S. Stewart, “Nonuniform spatial patterns of respiratory activity within biofilms during disinfection,” Applied and Environmental Microbiology, vol. 61, no. 6, pp. 2252–2256, 1995. View at Google Scholar · View at Scopus
  42. S. Sardin, J.-J. Morrier, G. Benay, and O. Barsotti, “In vitro streptococcal adherence on prosthetic and implant materials. Interactions with physicochemical surface properties,” Journal of Oral Rehabilitation, vol. 31, no. 2, pp. 140–148, 2004. View at Google Scholar · View at Scopus