Table of Contents Author Guidelines Submit a Manuscript
International Journal of Microbiology
Volume 2013 (2013), Article ID 367021, 6 pages
http://dx.doi.org/10.1155/2013/367021
Research Article

Point Mutations in the folP Gene Partly Explain Sulfonamide Resistance of Streptococcus mutans

1Department of Anatomy, Makerere University, P.O. Box 7072, Kampala, Uganda
2Department of Medical Biochemistry and Microbiology, Uppsala University, Husargaten 3, Building D7 Level 3, P.O. Box 582, SE-75123 Uppsala, Sweden
3Department of Dentistry, Makerere University, P.O. Box 7072, Kampala, Uganda
4Department of Biochemistry, Makerere University, P.O. Box 7072, Kampala, Uganda

Received 5 November 2012; Accepted 24 January 2013

Academic Editor: Marco Gobbetti

Copyright © 2013 W. Buwembo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. J. Loesche, “Role of streptococcus mutans in human dental decay,” Microbiological Reviews, vol. 50, no. 4, pp. 353–380, 1986. View at Google Scholar · View at Scopus
  2. R. Facklam, “What happened to the streptococci: overview of taxonomic and nomenclature changes,” Clinical Microbiology Reviews, vol. 15, no. 4, pp. 613–630, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Bryskier, “Viridans group streptococci: a reservoir of resistant bacteria in oral cavities,” Clinical Microbiology and Infection, vol. 8, no. 2, pp. 65–69, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Wilén, W. Buwembo, H. Sendagire, F. Kironde, and G. Swedberg, “Cotrimoxazole resistance of Streptococcus pneumoniae and commensal streptococci from Kampala, Uganda,” Scandinavian Journal of Infectious Diseases, vol. 41, no. 2, pp. 113–121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Echave, J. Bille, C. Audet, I. Talla, B. Vaudaux, and M. Gehri, “Percentage, bacterial etiology and antibiotic susceptibility of acute respiratory infection and pneumonia among children in rural Senegal,” Journal of Tropical Pediatrics, vol. 49, no. 1, pp. 28–32, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Sosa, “Who issues guidelines on use of cotrimoxazole prophylaxis,” 2006, http://www.who.int/hiv/pub/guidelines/ctx/en/index.html.
  7. B. William, C. M. Rwenyonyi, G. Swedberg, and F. Kironde, “Cotrimoxazole prophylaxis specifically selects for cotrimoxazole resistance in streptococcus mutans and Streptococcus sobrinus with varied polymorphisms in the target genes folA and folP,” International Journal of Microbiology, vol. 2012, Article ID 916129, 10 pages, 2012. View at Publisher · View at Google Scholar
  8. A. Kamulegeya, B. William, and C. M. Rwenyonyi, “Knowledge and antibiotics prescription pattern among ugandan oral health care providers: a cross-sectional survey,” Journal of Dental Research, Dental Clinics, Dental Prospects, vol. 5, no. 2, pp. 61–66, 2011, http://dentistry.tbzmed.ac.ir/joddd. View at Google Scholar
  9. O. Skold, “Resistance to trimethoprim and sulfonamides,” Veterinary Research, vol. 32, no. 3-4, pp. 261–273, 2001. View at Google Scholar
  10. D. Ajdić, W. M. McShan, R. E. McLaughlin et al., “Genome sequence of streptococcus mutans UA159, a cariogenic dental pathogen,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 22, pp. 14434–14439, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Maruyama, M. Kobata, K. Kurokawa et al., “Comparative genomic analyses of streptococcus mutans provide insights into chromosomal shuffling and species-specific content,” BMC Genomics, vol. 10, article 358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Yanisch-Perron, J. Vieira, and J. Messing, “Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors,” Gene, vol. 33, no. 1, pp. 103–119, 1985. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Fermér and G. Swedberg, “Adaptation to sulfonamide resistance in Neisseria meningitidis may have required compensatory changes to retain enzyme function: kinetic analysis of dihydropteroate synthases from N. meningitidis expressed in a knockout mutant of Escherichia coli,” Journal of Bacteriology, vol. 179, no. 3, pp. 831–837, 1997. View at Google Scholar · View at Scopus
  14. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  15. O. Sköld, “Sulfonamides and trimethoprim,” Expert review of anti-infective therapy, vol. 8, no. 1, pp. 1–6, 2010. View at Google Scholar · View at Scopus
  16. S. Sridaran, S. K. McClintock, L. M. Syphard, K. M. Herman, J. W. Barnwell, and V. Udhayakumar, “Anti-folAte drug resistance in Africa: meta-analysis of reported dihydrofolAte reductase (dhfr) and dihydropteroate synthase (dhps) mutant genotype frequencies in African Plasmodium falciparum parasite populations,” Malaria Journal, vol. 9, no. 1, article 247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Brochet, E. Couvé, M. Zouine, C. Poyart, and P. Glaser, “A naturally occurring gene amplification leading to sulfonamide and trimethoprim resistance in Streptococcus agalactiae,” Journal of Bacteriology, vol. 190, no. 2, pp. 672–680, 2008. View at Publisher · View at Google Scholar · View at Scopus