Table of Contents Author Guidelines Submit a Manuscript
International Journal of Microbiology
Volume 2014, Article ID 489569, 7 pages
http://dx.doi.org/10.1155/2014/489569
Research Article

Detection of Integrase Gene in E. coli Isolated from Pigs at Different Stages of Production System

1Área de Toxicología, Departamento de Fisiopatología, Centro de Investigación Veterinaria de Tandil-Consejo Nacional de Investigaciones Científicas y Técnicas-Comisión de Investigaciones Científicas Provincia de Buenos Aires (CIVETAN-CONICET-CICPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN), Campus Universitario, Paraje Arroyo Seco s/n, Tandil, Argentina
2Área de Inmunoquímica y Biotecnología, Departamento de Sanidad Animal y Medicina Preventiva (SAMP), CIVETAN-CONICET-CICPBA, Facultad de Ciencias Veterinarias, UNICEN, Campus Universitario, Paraje Arroyo Seco s/n, Tandil, Argentina
3Área de Bioestadística, Departamento de SAMP, CIVETAN-CONICET-CICPBA, Facultad de Ciencias Veterinarias, UNICEN, Campus Universitario, Paraje Arroyo Seco s/n, Tandil, Argentina
4Área de Producción Porcina, Departamento de Producción Animal, Facultad de Ciencias Veterinarias, UNICEN, Campus Universitario, Paraje Arroyo Seco s/n, Tandil, Argentina

Received 30 July 2013; Revised 10 December 2013; Accepted 4 February 2014; Published 10 March 2014

Academic Editor: Vijay K. Juneja

Copyright © 2014 Eulalia de la Torre et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Integrons are one of the genetic elements involved in the acquisition of antibiotic resistance. The aim of the present research is to investigate the presence of integrons in commensal Escherichia coli (E. coli) strains, isolated from pigs at different stages of production system and from the environment in an Argentinian farm. Five sows postpartum and five randomly chosen piglets from each litter were sampled by rectal swabs. They were sampled again at day 21 and at day 70. Environmental samples from the farm were also obtained. E. coli containing any integron class or combination of both integrons was detected by polymerase chain reaction in 100% of sows and in piglets at different stages of production: farrowing pen stage 68.1%;, weaning 60%, and growing/finishing 85.8%, showing an increase along the production system. From environmental samples 78.4% of E. coli containing any integron class was detected. We conclude that animals and farm environment can act as reservoirs for potential spread of resistant bacteria by means of mobile genetic elements as integrons, which has a major impact on production of food animals and that can reach man through the food chain, constituting a problem for public health.