Table of Contents Author Guidelines Submit a Manuscript
International Journal of Microbiology
Volume 2014 (2014), Article ID 650328, 11 pages
http://dx.doi.org/10.1155/2014/650328
Research Article

Molecular Typing of Methicillin Resistant Staphylococcus aureus Clinical Isolates on the Basis of Protein A and Coagulase Gene Polymorphisms

Medical Microbiology & Immunology Department, Faculty of Medicine, Alexandria University, El Khartoom Square, El Azarita, Alexandria 21521, Egypt

Received 12 February 2014; Accepted 24 April 2014; Published 15 May 2014

Academic Editor: Joseph Falkinham

Copyright © 2014 Nancy Younis Omar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Montesinos, E. Salido, T. Delgado, M. Cuervo, and A. Sierra, “Epidemiologic genotyping of methicillin-resistant Staphylococcus aureus by pulsed-field gel electrophoresis at a University Hospital and comparison with antibiotyping and protein A and coagulase gene polymorphisms,” Journal of Clinical Microbiology, vol. 40, no. 6, pp. 2119–2125, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Valaperta, M. R. Tejada, M. Frigerio et al., “Staphylococcus aureus nosocomial infections: the role of a rapid and low-cost characterization for the establishment of a surveillance system,” New Microbiologica, vol. 33, no. 3, pp. 223–232, 2010. View at Google Scholar · View at Scopus
  3. J. V. Hookey, J. F. Richardson, and B. D. Cookson, “Molecular typing of Staphylococcus aureus based on PCR restriction fragment length polymorphism and DNA sequence analysis of the coagulase gene,” Journal of Clinical Microbiology, vol. 36, no. 4, pp. 1083–1089, 1998. View at Google Scholar · View at Scopus
  4. T. A. Wichelhaus, K.-P. Hunfeld, B. Böddinghaus, P. Kraiczy, V. Schäfer, and V. Brade, “Rapid molecular typing of methicillin-resistant Staphylococcus aureus by PCR-RFLP,” Infection Control and Hospital Epidemiology, vol. 22, no. 5, pp. 294–298, 2001. View at Google Scholar · View at Scopus
  5. M. Himabindu, D. S. Muthamilselvan, D. K. Bishi, and R. S. Verma, “Molecular analysis of coagulase gene polymorphism in clinical isolates of methicilin resistant Staphylococcus aureus by restriction fragment length polymorphism based genotyping,” American Journal of Infectious Diseases, vol. 5, no. 2, pp. 163–169, 2009. View at Google Scholar · View at Scopus
  6. F. Shakeri, A. Shojai, M. Golalipour, S. R. Alang, H. Vaez, and E. A. Ghaemi, “Spa diversity among MRSA and MSSA strains of Staphylococcus aureus in north of Iran,” International Journal of Microbiology, vol. 2010, Article ID 351397, 5 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Baird, “Staphylococcus: cluster-forming gram-positive cocci,” in Mackie and McCartney Practical Medical Microbiology, J. G. Collee, A. G. Fraser, B. P. Marmion, and A. Simmons, Eds., pp. 245–258, Churchill Livingstone, New York, NY, USA, 14th edition, 1996. View at Google Scholar
  8. Clinical and Laboratory Standards Institute, “Performance standards for Antimicrobial Susceptibility Testing; 21th informational supplement,” CLSI document M100-S21 Vol 31 No.1. Clinical and Laboratory Standards Institute, Wayne, Pa, USA, 2011.
  9. A.-P. Magiorakos, A. Srinivasan, R. B. Carey et al., “Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance,” Clinical Microbiology and Infection, vol. 18, no. 3, pp. 268–281, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Vannuffel, J. Gigi, H. Ezzedine et al., “Specific detection of methicillin-resistant Staphylococcus species by multiplex PCR,” Journal of Clinical Microbiology, vol. 33, no. 11, pp. 2864–2867, 1995. View at Google Scholar · View at Scopus
  11. P. R. Hunter and M. A. Gaston, “Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity,” Journal of Clinical Microbiology, vol. 26, no. 11, pp. 2465–2466, 1988. View at Google Scholar · View at Scopus
  12. S. L. Davis, M. B. Perri, S. M. Donabedian et al., “Epidemiology and outcomes of community-associated methicillin-resistant Staphylococcus aureus infection,” Journal of Clinical Microbiology, vol. 45, no. 6, pp. 1705–1711, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. F.-J. Schmitz, M. Steiert, H.-V. Tichy et al., “Typing of methicillin-resistant Staphylococcus aureus isolates from Dusseldorf by six genotypic methods,” Journal of Medical Microbiology, vol. 47, no. 4, pp. 341–351, 1998. View at Google Scholar · View at Scopus
  14. M. M. Baddour, M. M. Abuelkheir, and A. J. Fatani, “Trends in antibiotic susceptibility patterns and epidemiology of MRSA isolates from several hospitals in Riyadh, Saudi Arabia,” Annals of Clinical Microbiology and Antimicrobials, vol. 5, article 30, pp. 1–11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. P. L. Mehndiratta and P. Bhalla, “Typing of Methicillin resistant Staphylococcus aureus: a technical review,” Indian Journal of Medical Microbiology, vol. 30, no. 1, pp. 16–23, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Merlino, J. Watson, B. Rose et al., “Detection and expression of methicillin/oxacillin resistance in multidrug-resistant and non-multidrug-resistant Staphylococcus aureus in Central Sydney, Australia,” Journal of Antimicrobial Chemotherapy, vol. 49, no. 5, pp. 793–801, 2002. View at Google Scholar · View at Scopus
  17. H. I. Awadalla, I. A. Khalil, H. H. Bassim, M. N. Ahmed, and L. M. Wahba, “Molecular typing of methicilin-resistant Staphylococcus aureus isolates at Ain Shams University Hospital, Egypt,” African Journal of Microbiology Research, vol. 4, no. 15, pp. 1639–1646, 2010. View at Google Scholar · View at Scopus
  18. I. Janwithayanuchit, S. Ngam-ululert, P. Paungmoung, and W. Rangsipanuratn, “Epidemiologic study of methicillin-resistant Staphylococcus aureus by coagulase gene polymorphism,” ScienceAsia, vol. 32, no. 2, pp. 127–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Shopsin, M. Gomez, M. Waddington, M. Riehman, and B. N. Kreiswirth, “Use of coagulase gene (coa) repeat region nucleotide sequences for typing of methicillin-resistant Staphylococcus aureus strains,” Journal of Clinical Microbiology, vol. 38, no. 9, pp. 3453–3456, 2000. View at Google Scholar · View at Scopus
  20. H. K. Tiwari, D. Sapkota, A. Gaur, J. P. Mathuria, A. Singh, and M. R. Sen, “Molecular typing of clinical Staphylococcus aureus isolates from Northern India using coagulase gene PCR-RFLP,” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 39, no. 3, pp. 467–473, 2008. View at Google Scholar · View at Scopus
  21. S.-H. Goh, S. K. Byrne, J. L. Zhang, and A. W. Chow, “Molecular typing of Staphylococcus aureus on the basis of coagulase gene polymorphisms,” Journal of Clinical Microbiology, vol. 30, no. 7, pp. 1642–1645, 1992. View at Google Scholar · View at Scopus
  22. H. D. Saei, M. Ahmadi, K. Mardani, and R. A. Batavani, “Molecular typing of Staphylococcus aureus isolated from bovine mastitis based on polymorphism of the coagulase gene in the north west of Iran,” Veterinary Microbiology, vol. 137, no. 1-2, pp. 202–206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Lange, M. Cardoso, D. Senczek, and S. Schwarz, “Molecular subtyping of Staphylococcus aureus isolates from cases of bovine mastitis in Brazil,” Veterinary Microbiology, vol. 67, no. 2, pp. 127–141, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Lawrence, M. Cosseron, O. Mimoz et al., “Use of coagulase gene typing method for detection of carrier of methicillin resistant Staphylococcus aureus,” Journal of Antimicrobial Chemotherapy, vol. 37, pp. 687–696, 1996. View at Google Scholar
  25. H. D. Saei and M. Ahmadi, “Discrimination of Staphylococcus aureus isolates on the basis of gene coding protein A using PCR-restriction enzyme analysis,” Comparative Clinical Pathology, vol. 21, no. 5, pp. 645–652, 2011. View at Google Scholar
  26. H. M. E. Frenay, J. P. G. Theelen, L. M. Schouls et al., “Discrimination of epidemic and nonepidemic methicillin-resistant Staphylococcus aureus strains on the basis of protein A gene polymorphism,” Journal of Clinical Microbiology, vol. 32, no. 3, pp. 846–847, 1994. View at Google Scholar · View at Scopus
  27. S. A. Adesida, Y. Likhoshvay, W. Eisner et al., “Repeats in the 3′ region of the protein A gene is unique in a strain of Staphylococcus aureus recovered from wound infections in Lagos, Nigeria,” African Journal of Biotechnology, vol. 5, no. 20, pp. 1858–1863, 2006. View at Google Scholar · View at Scopus
  28. P. Mehndiratta, P. Bhalla, A. Ahmed, and Y. Sharma, “Molecular typing of methicillin-resistant Staphylococcus aureus strains by PCR-RFLP of SPA gene: a reference laboratory perspective,” Indian Journal of Medical Microbiology, vol. 27, no. 2, pp. 116–122, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Wilailuckana, C. Tribuddharat, C. Tiensasitorn et al., “Discriminatory powers of molecular typing techniques for methicillin-resistant Staphylococcus aureus in a University Hospital, Thailand,” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 37, no. 2, pp. 327–334, 2006. View at Google Scholar · View at Scopus
  30. N. Mitani, A. Koizumi, R. Sano et al., “Molecular typing on methicillin-resistant Staphylococcus aureus by PCR-RFLP and its usefulness in an epidemiological study of an outbreak,” Japanese Journal of Infectious Diseases, vol. 58, no. 4, pp. 250–252, 2005. View at Google Scholar · View at Scopus