Abstract

We use the Lagrange identity method and the logarithmic convexity to obtain uniqueness and exponential growth of solutions in the thermoelasticity of type III and thermoelasticity without energy dissipation. As this is not the first contribution of this kind in this theory, it is worth remarking that the assumptions we use here are different from those used in other previous contributions. We assume that the elasticity tensor is positive semidefinite, but we allow that the constitutive tensor of the entropy flux vector (kij), which is a characteristic tensor in this theory, is not sign-definite. The Lagrange identity method is used to obtain uniqueness in the context of the thermoelasticity of type III. The fundamental key to obtain exponential growth in the thermoelasticity without energy dissipation is the use of a new functional. This functional is inspired in that it is used when the elasticity tensor is not sign-definite, but (kij) is positive definite.