Abstract

A two-dimensional nonlinear aerodynamics representation analysis is proposed for the investigation of inviscid flowfields of unsteady airfoils. Such problems are reduced to the solution of a nonlinear multidimensional singular integral equation as the source and vortex strength distributions are dependent on the history of these distributions on the NACA airfoil surface. A turbulent boundary layer model is further investigated, based on the formulation of the unsteady behaviour of the momentum integral equation. An application is finally given to the determination of the velocity and pressure coefficient field around an aircraft by assuming linear vortex distribution.