Abstract

In order to determine the characteristics of peristaltic transport of magnetohydrodynamic flow through a porous medium, the motion of a hydromagnetic (electrically conducting), viscous, and incompressible fluid in planer channel filled with a homogeneous porous medium and having electrically insulated walls that are transversely displaced by an infinite, harmonic travelling wave of large wavelength was analyzed using a perturbation expansion in terms of a variant wave number. We obtain an explicit form for the velocity field, a relation between the pressure rise and flow rate, in terms of Reynolds number, wave number, Hartmann number, permeability parameter, and the occlusion. The effects of all parameters of the problem are numerically discussed and graphically explained.