Abstract

We introduce and discuss the generalized Klein-Gordon second-order partial differential equation in the Robertson-Walker space-time, using the Casimir second-order invariant operator written in hyperspherical coordinates. The de Sitter and anti-de Sitter space-times are recovered by means of a convenient choice of the parameter associated to the space-time curvature. As an application, we discuss a few properties of the solutions. We also discuss the case where we have positive frequency exponentials and the creation and annihilation operators of particles with known quantum numbers. Finally, we recover the Minkowskian case, that is, the case of null curvature.