Abstract

The paper investigates the linear stability of mammalian physiology time-delayed flow for three distinct cases (normal cell cycle, a neoplasmic cell cycle, and multiple cell arrest states), for the Dirac, uniform, and exponential distributions. For the Dirac distribution case, it is shown that the model exhibits a Hopf bifurcation for certain values of the parameters involved in the system. As well, for these values, the structural stability of the SODE is studied, using the five KCC-invariants of the second-order canonical extension of the SODE, and all the cases prove to be Jacobi unstable.