Table of Contents Author Guidelines Submit a Manuscript
International Journal of Mathematics and Mathematical Sciences
Volume 2006, Article ID 70835, 19 pages
http://dx.doi.org/10.1155/IJMMS/2006/70835

Building some symmetric Laguerre-Hahn functionals of class two at most through the sum of symmetric functionals as pseudofunctions with a Dirac measure at origin

1Département de Mathématiques, Institut Supérieur des Sciences Appliquées et de Technologie de Gabès, Rue Omar Ibn El Khattab, 6072-Gabès, Tunisia
2Faculté des Sciences de Gabès, Université de Gabès, Route de Mednine, 6029-Gabès, Tunisia

Received 16 May 2005; Revised 4 March 2006; Accepted 4 May 2006

Copyright © 2006 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Alaya and P. Maroni, “Some semi-classical and Laguerre-Hahn forms defined by pseudo-functions,” Methods and Applications of Analysis, vol. 3, no. 1, pp. 12–30, 1996. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. J. Alaya and P. Maroni, “Symmetric Laguerre-Hahn forms of class s=1,” Integral Transforms and Special Functions, vol. 4, no. 4, pp. 301–320, 1996. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. D. Beghdadi and P. Maroni, “On the inverse problem of the product of a semi-classical form by a polynomial,” Journal of Computational and Applied Mathematics, vol. 88, no. 2, pp. 377–399, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. A. Branquinho and F. Marcellán, “Generating new classes of orthogonal polynomials,” International Journal of Mathematics and Mathematical Sciences, vol. 19, no. 4, pp. 643–656, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. T. S. Chihara, “On co-recursive orthogonal polynomials,” Proceedings of the American Mathematical Society, vol. 8, no. 5, pp. 899–905, 1957. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978. View at Zentralblatt MATH · View at MathSciNet
  7. E. B. Christoffel, “Über die Gaussische Quadratur und eine Verallgemeinerung derselben,” Journal für die reine und angewandte Mathematik, vol. 55, pp. 61–82, 1858. View at Google Scholar
  8. J. Dini, Sur les formes linéaires et les polynômes orthogonaux de Laguerre-Hahn, Thése, Universite Pierre et Marie Curie, Paris, 1988.
  9. J. Dini and P. Maroni, “Sur la multiplication d'une forme semi-classique par un polynôme,” Publ. Sem. Math. Univ. d'Antananarivo, vol. 3, pp. 76–89, 1989. View at Google Scholar
  10. J. H. Lee and K. H. Kwon, “Division problem of moment functionals,” The Rocky Mountain Journal of Mathematics, vol. 32, no. 2, pp. 739–758, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. F. Marcellán and E. Prianes, “Perturbations of Laguerre-Hahn linear functionals,” Journal of Computational and Applied Mathematics, vol. 105, no. 1-2, pp. 109–128, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. P. Maroni, “Sur la décomposition quadratique d'une suite de polynômes orthogonaux. I,” Rivista di Matematica Pura ed Applicata, no. 6, pp. 19–53, 1990. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. P. Maroni, “Sur la suite de polynômes orthogonaux associée à la forme u=δc+λ(xc)1L,” Periodica Mathematica Hungarica, vol. 21, no. 3, pp. 223–248, 1990. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. P. Maroni, “Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques,” in Orthogonal Polynomials and Their Applications (Erice, 1990), C. Brezinski, L. Gori, and A. Ronveaux, Eds., vol. 9 of IMACS Ann. Comput. Appl. Math., pp. 95–130, Baltzer, Basel, 1991. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. P. Maroni, “On a regular form defined by a pseudo-function,” Numerical Algorithms, vol. 11, no. 1, pp. 243–254, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. P. Maroni and I. Nicolau, “On the inverse problem of the product of a form by a polynomial: the cubic case,” Applied Numerical Mathematics, vol. 45, no. 4, pp. 419–451, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet