International Journal of Mathematics and Mathematical Sciences

International Journal of Mathematics and Mathematical Sciences / 2007 / Article

Research Article | Open Access

Volume 2007 |Article ID 23618 | 12 pages | https://doi.org/10.1155/2007/23618

On the Rational Recursive Sequence xn+1=(A+i=0kαixni)/(B+i=0kβixni)

Academic Editor: Martin J. Bohner
Received13 Aug 2006
Revised22 Jan 2007
Accepted22 Jan 2007
Published05 Apr 2007

Abstract

The main objective of this paper is to study the boundedness character, the periodic character, the convergence, and the global stability of the positive solutions of the difference equation xn+1=(A+i=0kαixni)/(B+i=0kβixni),n=0,1,2,, where A,B,αi,βi and the initial conditions xk,...,x1,x0 are arbitrary positive real numbers, while k is a positive integer number.

References

  1. M. T. Aboutaleb, M. A. El-Sayed, and A. E. Hamza, “Stability of the recursive sequence xn+1=(αβxn)/(γ+xn1),” Journal of Mathematical Analysis and Applications, vol. 261, no. 1, pp. 126–133, 2001. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  2. R. P. Agarwal, Difference Equations and Inequalities, vol. 155 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1992. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  3. A. M. Amleh, E. A. Grove, G. Ladas, and D. A. Georgiou, “On the recursive sequence xn+1=α+(xn1/xn),” Journal of Mathematical Analysis and Applications, vol. 233, no. 2, pp. 790–798, 1999. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  4. R. DeVault, W. Kosmala, G. Ladas, and S. W. Schultz, “Global behavior of yn+1=(p+ynk)/(qyn+ynk),” Nonlinear Analysis, vol. 47, no. 7, pp. 4743–4751, 2001. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  5. R. DeVault, G. Ladas, and S. W. Schultz, “On the recursive sequence xn+1=(A/xn)+(1/xn2),” Proceedings of the American Mathematical Society, vol. 126, no. 11, pp. 3257–3261, 1998. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  6. R. DeVault and S. W. Schultz, “On the dynamics of xn+1=(βxn+γxn1)/(Bxn+Dxn2),” Communications on Applied Nonlinear Analysis, vol. 12, no. 2, pp. 35–39, 2005. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  7. H. El-Metwally, E. A. Grove, and G. Ladas, “A global convergence result with applications to periodic solutions,” Journal of Mathematical Analysis and Applications, vol. 245, no. 1, pp. 161–170, 2000. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  8. H. El-Metwally, E. A. Grove, G. Ladas, and H. D. Voulov, “On the global attractivity and the periodic character of some difference equations,” Journal of Difference Equations and Applications, vol. 7, no. 6, pp. 837–850, 2001. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  9. H. M. El-Owaidy, A. M. Ahmed, and M. S. Mousa, “On asymptotic behaviour of the difference equation xn+1=α+(xn1p/xnp),” Journal of Applied Mathematics & Computing, vol. 12, no. 1-2, pp. 31–37, 2003. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  10. H. M. El-Owaidy, A. M. Ahmed, and Z. Elsady, “Global attractivity of the recursive sequence xn+1=(αβxnk)/(γ+xn),” Journal of Applied Mathematics & Computing, vol. 16, no. 1-2, pp. 243–249, 2004. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  11. G. Karakostas, “Convergence of a difference equation via the full limiting sequences method,” Differential Equations and Dynamical Systems, vol. 1, no. 4, pp. 289–294, 1993. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  12. G. Karakostas and S. Stević, “On the recursive sequence xn+1=A+f(xn,,xnk+1)/xnk,” Communications on Applied Nonlinear Analysis, vol. 11, no. 3, pp. 87–99, 2004. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  13. V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, vol. 256 of Mathematics and Its Applications, Kluwer Academic, Dordrecht, The Netherlands, 1993. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  14. M. R. S. Kulenović and G. Ladas, “Dynamics of Second Order Rational Difference Equations. With Open Problems and Conjectures,” Chapman & Hall/CRC, Boca Raton, Fla, USA, 2002. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  15. M. R. S. Kulenović, G. Ladas, and W. S. Sizer, “On the recursive sequence xn+1=(αxn+βxn1)/(γxn+δxn1),” Mathematical Sciences Research Hot-Line, vol. 2, no. 5, pp. 1–16, 1998. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  16. S. A. Kuruklis, “The asymptotic stability of xn+1αxn+bxnk=0,” Journal of Mathematical Analysis and Applications, vol. 188, no. 3, pp. 719–731, 1994. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  17. C. H. Gibbons, M. R. S. Kulenović, G. Ladas, and H. D. Voulov, “On the trichotomy character of xn+1=(α+βxn+γxn1)/(A+xn),” Journal of Difference Equations and Applications, vol. 8, no. 1, pp. 75–92, 2002. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  18. C. H. Gibbons, M. R. S. Kulenović, and G. Ladas, “On the dynamics of xn+1=(α+βxn+γxn1)/(A+Bxn),” in New Trends in Difference Equations. Proceedings of the 5th International Conference on Difference Equations and Applications, Temuco, Chile, pp. 141–158, Taylor & Francis, London, UK, 2002. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  19. E. Camouzis, G. Ladas, and H. D. Voulov, “On the dynamics of xn+1=(α+γxn1+δxn2)/(A+xn2),” Journal of Difference Equations and Applications, vol. 9, no. 8, pp. 731–738, 2003. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  20. G. Ladas, “On the recursive sequence xn+1=(α+βxn+γxn1)/(A+Bxn+Cxn1),” Journal of Difference Equations and Applications, vol. 1, no. 3, pp. 317–321, 1995. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  21. W.-T. Li and H.-R. Sun, “Global attractivity in a rational recursive sequence,” Dynamic Systems and Applications, vol. 11, no. 3, pp. 339–345, 2002. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  22. S. Stević, “On the recursive sequence xn+1=xn1/g(xn),” Taiwanese Journal of Mathematics, vol. 6, no. 3, pp. 405–414, 2002. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  23. S. Stević, “The recursive sequence xn+1=g(xn,xn1)/(A+xn),” Applied Mathematics Letters, vol. 15, no. 3, pp. 305–308, 2002. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  24. S. Stević, “On the recursive sequence xn+1=α+(xn1p/xnp),” Journal of Applied Mathematics & Computing, vol. 18, no. 1-2, pp. 229–234, 2005. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  25. E. M. E. Zayed and M. A. El-Moneam, “On the rational recursive sequence xn+1=(D+αxn+βxn1+γxn2)/(Axn+Bxn1+Cxn2),” Communications on Applied Nonlinear Analysis, vol. 12, no. 4, pp. 15–28, 2005. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  26. E. M. E. Zayed and M. A. El-Moneam, “On the rational recursive sequence xn+1=(αxn+βxn1+γxn2+δxn3)/(Axn+Bxn1+Cxn2+Dxn3),” Journal of Applied Mathematics & Computing, vol. 22, no. 1-2, pp. 247–262, 2006. View at: Google Scholar | MathSciNet

Copyright © 2007 E. M. E. Zayed and M. A. El-Moneam. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

0 Views | 0 Downloads | 0 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19.