`International Journal of Mathematics and Mathematical SciencesVolume 2007, Article ID 23618, 12 pageshttp://dx.doi.org/10.1155/2007/23618`
Research Article

## On the Rational Recursive Sequence xn+1=(A+∑i=0kαixn−i)/(B+∑i=0kβixn−i)

1Mathematics Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
2Mathematics Department, Faculty of Science, Taif University, P.O. Box 888, El-Taif 5700, Hawai, Saudi Arabia

Received 13 August 2006; Revised 22 January 2007; Accepted 22 January 2007

Copyright © 2007 E. M. E. Zayed and M. A. El-Moneam. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. M. T. Aboutaleb, M. A. El-Sayed, and A. E. Hamza, “Stability of the recursive sequence ${x}_{n+1}=\left(\alpha -\beta {x}_{n}\right)/\left(\gamma +{x}_{n-1}\right)$,” Journal of Mathematical Analysis and Applications, vol. 261, no. 1, pp. 126–133, 2001.
2. R. P. Agarwal, Difference Equations and Inequalities, vol. 155 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1992.
3. A. M. Amleh, E. A. Grove, G. Ladas, and D. A. Georgiou, “On the recursive sequence ${x}_{n+1}=\alpha +\left({x}_{n-1}/{x}_{n}\right)$,” Journal of Mathematical Analysis and Applications, vol. 233, no. 2, pp. 790–798, 1999.
4. R. DeVault, W. Kosmala, G. Ladas, and S. W. Schultz, “Global behavior of ${y}_{n+1}=\left(p+{y}_{n-k}\right)/\left(q{y}_{n}+{y}_{n-k}\right)$,” Nonlinear Analysis, vol. 47, no. 7, pp. 4743–4751, 2001.
5. R. DeVault, G. Ladas, and S. W. Schultz, “On the recursive sequence ${x}_{n+1}=\left(A/{x}_{n}\right)+\left(1/{x}_{n-2}\right)$,” Proceedings of the American Mathematical Society, vol. 126, no. 11, pp. 3257–3261, 1998.
6. R. DeVault and S. W. Schultz, “On the dynamics of ${x}_{n+1}=\left(\beta {x}_{n}+\gamma {x}_{n-1}\right)/\left(B{x}_{n}+D{x}_{n-2}\right)$,” Communications on Applied Nonlinear Analysis, vol. 12, no. 2, pp. 35–39, 2005.
7. H. El-Metwally, E. A. Grove, and G. Ladas, “A global convergence result with applications to periodic solutions,” Journal of Mathematical Analysis and Applications, vol. 245, no. 1, pp. 161–170, 2000.
8. H. El-Metwally, E. A. Grove, G. Ladas, and H. D. Voulov, “On the global attractivity and the periodic character of some difference equations,” Journal of Difference Equations and Applications, vol. 7, no. 6, pp. 837–850, 2001.
9. H. M. El-Owaidy, A. M. Ahmed, and M. S. Mousa, “On asymptotic behaviour of the difference equation ${x}_{n+1}=\alpha +\left({x}_{n-1}^{p}/{x}_{n}^{p}\right)$,” Journal of Applied Mathematics & Computing, vol. 12, no. 1-2, pp. 31–37, 2003.
10. H. M. El-Owaidy, A. M. Ahmed, and Z. Elsady, “Global attractivity of the recursive sequence ${x}_{n+1}=\left(\alpha -\beta {x}_{n-k}\right)/\left(\gamma +{x}_{n}\right)$,” Journal of Applied Mathematics & Computing, vol. 16, no. 1-2, pp. 243–249, 2004.
11. G. Karakostas, “Convergence of a difference equation via the full limiting sequences method,” Differential Equations and Dynamical Systems, vol. 1, no. 4, pp. 289–294, 1993.
12. G. Karakostas and S. Stević, “On the recursive sequence ${x}_{n+1}=A+f\left({x}_{n},\dots ,{x}_{n-k+1}\right)/{x}_{n-k}$,” Communications on Applied Nonlinear Analysis, vol. 11, no. 3, pp. 87–99, 2004.
13. V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, vol. 256 of Mathematics and Its Applications, Kluwer Academic, Dordrecht, The Netherlands, 1993.
14. M. R. S. Kulenović and G. Ladas, “Dynamics of Second Order Rational Difference Equations. With Open Problems and Conjectures,” Chapman & Hall/CRC, Boca Raton, Fla, USA, 2002.
15. M. R. S. Kulenović, G. Ladas, and W. S. Sizer, “On the recursive sequence ${x}_{n+1}=\left(\alpha {x}_{n}+\beta {x}_{n-1}\right)/\left(\gamma {x}_{n}+\delta {x}_{n-1}\right)$,” Mathematical Sciences Research Hot-Line, vol. 2, no. 5, pp. 1–16, 1998.
16. S. A. Kuruklis, “The asymptotic stability of ${x}_{n+1}-\alpha {x}_{n}+b{x}_{n-k}=0$,” Journal of Mathematical Analysis and Applications, vol. 188, no. 3, pp. 719–731, 1994.
17. C. H. Gibbons, M. R. S. Kulenović, G. Ladas, and H. D. Voulov, “On the trichotomy character of ${x}_{n+1}=\left(\alpha +\beta {x}_{n}+\gamma {x}_{n-1}\right)/\left(A+{x}_{n}\right)$,” Journal of Difference Equations and Applications, vol. 8, no. 1, pp. 75–92, 2002.
18. C. H. Gibbons, M. R. S. Kulenović, and G. Ladas, “On the dynamics of ${x}_{n+1}=\left(\alpha +\beta {x}_{n}+\gamma {x}_{n-1}\right)/\left(A+B{x}_{n}\right)$,” in New Trends in Difference Equations. Proceedings of the 5th International Conference on Difference Equations and Applications, Temuco, Chile, pp. 141–158, Taylor & Francis, London, UK, 2002.
19. E. Camouzis, G. Ladas, and H. D. Voulov, “On the dynamics of ${x}_{n+1}=\left(\alpha +\gamma {x}_{n-1}+\delta {x}_{n-2}\right)/\left(A+{x}_{n-2}\right)$,” Journal of Difference Equations and Applications, vol. 9, no. 8, pp. 731–738, 2003.
20. G. Ladas, “On the recursive sequence ${x}_{n+1}=\left(\alpha +\beta {x}_{n}+\gamma {x}_{n-1}\right)/\left(A+B{x}_{n}+C{x}_{n-1}\right)$,” Journal of Difference Equations and Applications, vol. 1, no. 3, pp. 317–321, 1995.
21. W.-T. Li and H.-R. Sun, “Global attractivity in a rational recursive sequence,” Dynamic Systems and Applications, vol. 11, no. 3, pp. 339–345, 2002.
22. S. Stević, “On the recursive sequence ${x}_{n+1}={x}_{n-1}/g\left({x}_{n}\right)$,” Taiwanese Journal of Mathematics, vol. 6, no. 3, pp. 405–414, 2002.
23. S. Stević, “The recursive sequence ${x}_{n+1}=g\left({x}_{n},{x}_{n-1}\right)/\left(A+{x}_{n}\right)$,” Applied Mathematics Letters, vol. 15, no. 3, pp. 305–308, 2002.
24. S. Stević, “On the recursive sequence ${x}_{n+1}=\alpha +\left({x}_{n-1}^{p}/{x}_{n}^{p}\right)$,” Journal of Applied Mathematics & Computing, vol. 18, no. 1-2, pp. 229–234, 2005.
25. E. M. E. Zayed and M. A. El-Moneam, “On the rational recursive sequence ${x}_{n+1}=\left(D+\alpha {x}_{n}+\beta {x}_{n-1}+\gamma {x}_{n-2}\right)/\left(A{x}_{n}+B{x}_{n-1}+C{x}_{n-2}\right)$,” Communications on Applied Nonlinear Analysis, vol. 12, no. 4, pp. 15–28, 2005.
26. E. M. E. Zayed and M. A. El-Moneam, “On the rational recursive sequence ${x}_{n+1}=\left(\alpha {x}_{n}+\beta {x}_{n-1}+\gamma {x}_{n-2}+\delta {x}_{n-3}\right)/\left(A{x}_{n}+B{x}_{n-1}+C{x}_{n-2}+D{x}_{n-3}\right)$,” Journal of Applied Mathematics & Computing, vol. 22, no. 1-2, pp. 247–262, 2006.