International Journal of Mathematics and Mathematical Sciences

International Journal of Mathematics and Mathematical Sciences / 2007 / Article

Research Article | Open Access

Volume 2007 |Article ID 057607 | https://doi.org/10.1155/2007/57607

Liamidi Leadi, Aboubacar Marcos, "On the First Curve in the FučiK Spectrum with Weights for a Mixed p-Laplacian", International Journal of Mathematics and Mathematical Sciences, vol. 2007, Article ID 057607, 13 pages, 2007. https://doi.org/10.1155/2007/57607

On the First Curve in the FučiK Spectrum with Weights for a Mixed p-Laplacian

Academic Editor: Peter Basarab-Horwath
Received27 Apr 2007
Accepted09 Aug 2007
Published01 Jan 2008

Abstract

We show the existence of a first curve in the Fučik spectrum with weights for the p-Laplacian under mixed boundary conditions. We also study the asymptotic behavior of this first curve.

References

  1. M. Arias, J. Campos, M. Cuesta, and J.-P. Gossez, “Asymmetric elliptic problems with indefinite weights,” Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, vol. 19, no. 5, pp. 581–616, 2002. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  2. M. Arias, J. Campos, M. Cuesta, and J.-P. Gossez, “An asymmetric neumann problem with weights,” to appear in Annales de l'Institut Henri Poincaré. View at: Google Scholar
  3. M. Guedda and L. Véron, “Quasilinear elliptic equations involving critical Sobolev exponents,” Nonlinear Analysis. Theory, Methods & Applications, vol. 13, no. 8, pp. 879–902, 1989. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  4. O. Ladyzhenskaya and N. Uraltseva, Equations aux dérivées partielles du type elliptique du second ordre, Ed. Masson, Paris, France, 1975.
  5. J. Serrin, “Local behavior of solutions of quasi-linear equations,” Acta Mathematica, vol. 111, pp. 247–302, 1964. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  6. P. Tolksdorf, “Regularity for a more general class of quasilinear elliptic equations,” Journal of Differential Equations, vol. 51, no. 1, pp. 126–150, 1984. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  7. P. Tolksdorf, “On the Dirichlet problem for quasilinear equations in domains with conical boundary points,” Communications in Partial Differential Equations, vol. 8, no. 7, pp. 773–817, 1983. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  8. E. DiBenedetto, “C1+α local regularity of weak solutions of degenerate elliptic equations,” Nonlinear Analysis. Theory, Methods & Applications, vol. 7, no. 8, pp. 827–850, 1983. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  9. R. Dautray and J. L. Lions, Analyse Mathématiques et calcul numérique pour les sciences et les techniques, Masson, Paris, France, 1984.
  10. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, vol. 88 of Pure and Applied Mathematics, Academic Press, New York, NY, USA, 1980. View at: Zentralblatt MATH | MathSciNet
  11. W. P. Ziemer, Weakly Differentiable Functions, vol. 120 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1989. View at: Zentralblatt MATH | MathSciNet
  12. A. Anane, Etude des valeurs propres et de la rsonance pour l'oprateur p-Laplacien, Thèse de doctorat, voir aussi Comptes rendus de l'Académie des sciences Paris, vol. 305, pp. 725—728, 1987.
  13. P. Lindqvist, “On the equation div(|u|p2u)+λ|u|p2u=0,” Proceedings of the American Mathematical Society, vol. 109, no. 1, pp. 157–164, 1990. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  14. P. Lindqvist, “Addendum: “On the equation div(|u|p2u)+λ|u|p2u=0”,” Proceedings of the American Mathematical Society, vol. 116, no. 2, pp. 583–584, 1992. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  15. J. A. Aguilar Crespo and I. Peral Alonso, “On an elliptic equation with exponential growth,” Rendiconti del Seminario Matematico della Università di Padova, vol. 96, pp. 143–175, 1996. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  16. M. Cuesta, “Eigenvalue problems for the p-Laplacian with indefinite weights,” Electronic Journal of Differential Equations, vol. 2001, no. 33, pp. 1–9, 2001. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  17. A. Touzani, Quelques résultats sur le Ap-Laplacien avec poids indéfini, Thèse de doctorat.
  18. J.-P. Gossez and A. Marcos, “On the first curve in the Fučik spectrum of a mixed problem,” in Reaction Diffusion Systems (Trieste, 1995), vol. 194 of Lecture Notes in Pure and Applied Mathematics, pp. 157–162, Dekker, New York, NY, USA, 1998. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  19. J. L. Vázquez, “A strong maximum principle for some quasilinear elliptic equations,” Applied Mathematics and Optimization, vol. 12, no. 3, pp. 191–202, 1984. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  20. P. Drábek, Solvability and Bifurcations of Nonlinear Equations, vol. 264 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow, UK, 1992. View at: Zentralblatt MATH | MathSciNet
  21. M. Cuesta, “On the Fuçik spectrum of the laplacian and p-Laplacian,” in Proceedings of Seminar in Differential Equations, Kvilda, Czech Republic, May-June 2000. View at: Google Scholar
  22. M. A. del Pino, R. F. Manásevich, and A. E. Murúa, “Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE,” Nonlinear Analysis. Theory, Methods & Applications, vol. 18, no. 1, pp. 79–92, 1992. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet

Copyright © 2007 Liamidi Leadi and Aboubacar Marcos. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views191
Downloads490
Citations

Related articles

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.