Abstract

The purpose of this paper is to ensure the existence of fixed points for multivalued nonexpansive weakly inward nonself-mappings in uniformly convex metric spaces. This extends a result of Lim (1980) in Banach spaces. All results of Dhompongsa et al. (2005) and Chaoha and Phon-on (2006) are also extended.

1. Introduction

In 1974, Lim [1] developed a result concerning the existence of fixed points for multivalued nonexpansive self-mappings in uniformly convex Banach spaces. This result was extended to nonself-mappings satisfying the inwardness condition independently by Downing and Kirk [2] and Reich [3]. This result was extended to weak inward mappings independently by Lim [4] and Xu [5]. Recently, Dhompongsa et al. [6] presented an analog of Lim-Xu's result in CAT(0) spaces. In this note, we extend the result to uniformly convex metric spaces which improve results of both Lim-Xu and Dhompongsa et al. In addition, we also give a new proof of a result of Lim [7] by using Caristi's theorem [8]. Finally, we give some basic properties of fixed point sets for quasi-nonexpansive mappings for these spaces.

2. Preliminaries

A concept of convexity in metric spaces was introduced by Takahashi [9]. Definition 2.1. Let (๐‘‹,๐‘‘) be a metric space and ๐ผ=[0,1]. A mapping ๐‘Šโˆถ๐‘‹ร—๐‘‹ร—๐ผโ†’๐‘‹ is said to be a convex structure on ๐‘‹ if for each (๐‘ฅ,๐‘ฆ,๐œ†)โˆˆ๐‘‹ร—๐‘‹ร—๐ผ and ๐‘งโˆˆ๐‘‹,๐‘‘(๐‘ง,๐‘Š(๐‘ฅ,๐‘ฆ,๐œ†))โ‰ค๐œ†๐‘‘(๐‘ง,๐‘ฅ)+(1โˆ’๐œ†)๐‘‘(๐‘ง,๐‘ฆ).(2.1)A metric space (๐‘‹,๐‘‘) together with a convex structure ๐‘Š is called a convex metric space which will be denoted by (๐‘‹,๐‘‘,๐‘Š).

Definition 2.2. A convex metric space (๐‘‹,๐‘‘,๐‘Š) is said to be uniformly convex [10] if for any ๐œ€>0, there exists ๐›ฟ=๐›ฟ(๐œ€)>0 such that for all ๐‘Ÿ>0 and ๐‘ฅ,๐‘ฆ,๐‘งโˆˆ๐‘‹ with ๐‘‘(๐‘ง,๐‘ฅ)โ‰ค๐‘Ÿ,๐‘‘(๐‘ง,๐‘ฆ)โ‰ค๐‘Ÿ and ๐‘‘(๐‘ฅ,๐‘ฆ)โ‰ฅ๐‘Ÿ๐œ€,1๐‘‘(๐‘ง,๐‘Š(๐‘ฅ,๐‘ฆ,2))โ‰ค๐‘Ÿ(1โˆ’๐›ฟ).(2.2)Obviously, uniformly convex Banach spaces are uniformly convex metric spaces. By using the (CN) inequality [11], it is easy to see that CAT(0) spaces are also uniformly convex.

For ๐‘ฅ,๐‘ฆโˆˆ๐‘‹, ๐ถโŠ‚๐‘‹, and ๐œ†โˆˆ๐ผ, we denote ๐‘Š(๐‘ฅ,๐‘ฆ,๐œ†)โˆถ=๐œ†๐‘ฅโŠ•(1โˆ’๐œ†)๐‘ฆ, [๐‘ฅ,๐‘ฆ]โˆถ={๐œ†๐‘ฅโŠ•(1โˆ’๐œ†)๐‘ฆโˆถ๐œ†โˆˆ๐ผ}, (๐‘ฅ,๐‘ฆ]โˆถ=[๐‘ฅ,๐‘ฆ]โงต{๐‘ฅ}, and ๐œ†๐‘ฅโŠ•(1โˆ’๐œ†)๐ถโˆถ={๐œ†๐‘ฅโŠ•(1โˆ’๐œ†)๐‘งโˆถ๐‘งโˆˆ๐ถ}. So we can define the inward set ๐ผ๐ถ(๐‘ฅ) of ๐‘ฅ as follows:๐ผ๐ถ(๐‘ฅ)โˆถ={๐‘ฅ}โˆช{๐‘งโˆถ(๐‘ฅ,๐‘ง]โˆฉ๐ถโ‰ โˆ…}.(2.3) Let ๐ถ be a nonempty subset of a metric space ๐‘‹. Then ๐ถ is called convex if for ๐‘ฅ,๐‘ฆโˆˆ๐ถ,[๐‘ฅ,๐‘ฆ]โŠ‚๐ถ. We will denote by โ„ฑ(๐ถ) the family of nonempty closed subsets of ๐ถ, by ๐’ฆ(๐ถ) the family of nonempty compact subsets of ๐ถ, and by ๐’ฆ๐’ž(๐ถ) the family of nonempty compact convex subsets of ๐ถ. Let ๐ป(โ‹…,โ‹…) be the Hausdorff distance on โ„ฑ(๐‘‹). That is,๐ป(๐ด,๐ต)=max{sup๐‘Žโˆˆ๐ดdist(๐‘Ž,๐ต),sup๐‘โˆˆ๐ตdist(๐‘,๐ด)},๐ด,๐ตโˆˆโ„ฑ(๐‘‹).(2.4)

Definition 2.3. A multivalued mapping ๐‘‡โˆถ๐ถโ†’โ„ฑ(๐‘‹) is said to be inward on ๐ถ if for some ๐‘โˆˆ๐ถ,๐œ†๐‘โŠ•(1โˆ’๐œ†)๐‘‡๐‘ฅโŠ‚๐ผ๐ถ(๐‘ฅ)โˆ€๐‘ฅโˆˆ๐ถ,โˆ€๐œ†โˆˆ[0,1],(2.5)and weakly inward on ๐ถ if for some ๐‘โˆˆ๐ถ,๐œ†๐‘โŠ•(1โˆ’๐œ†)๐‘‡๐‘ฅโŠ‚๐ผ๐ถ(๐‘ฅ)โˆ€๐‘ฅโˆˆ๐ถ,โˆ€๐œ†โˆˆ[0,1],(2.6)where ๐ด denotes the closure of a subset ๐ด of ๐‘‹. In a Banach space setting, if ๐ถ is convex, then so is ๐ผ๐ถ(๐‘ฅ). Therefore, the conditions above can be replaced by ๐‘‡๐‘ฅโŠ‚๐ผ๐ถ(๐‘ฅ) and ๐‘‡๐‘ฅโŠ‚๐ผ๐ถ(๐‘ฅ), respectively.

Definition 2.4. A multivalued mapping ๐‘‡โˆถ๐ถโ†’โ„ฑ(๐‘‹) satisfying๐ป(๐‘‡๐‘ฅ,๐‘‡๐‘ฆ)โ‰ค๐‘˜๐‘‘(๐‘ฅ,๐‘ฆ),๐‘ฅ,๐‘ฆโˆˆ๐ถ,(2.7)is called a contraction if ๐‘˜โˆˆ[0,1) and nonexpansive if ๐‘˜=1. A point ๐‘ฅ is a fixed point of ๐‘‡ if ๐‘ฅโˆˆ๐‘‡๐‘ฅ.

Given a metric space ๐‘‹, one way to describe a metric space ultrapower ๎‚๐‘‹ of ๐‘‹ is to first embed ๐‘‹ as a closed subset of a Banach space ๐ธ (see, e.g., [12, page 129]). Let ๎‚๐ธ denote a Banach space ultrapower of ๐ธ relative to some nontrivial ultrafilter ๐’ฐ (see, e.g., [13]). Then take๎‚๐‘‹โˆถ={ฬƒ๐‘ฅ=[{๐‘ฅ๐‘›๎‚}]โˆˆ๐ธโˆถ๐‘ฅ๐‘›โˆˆ๐‘‹โˆ€๐‘›}.(2.8)One can then let ๎‚๐‘‘ denote the metric on ๎‚๐‘‹ inherited from the ultrapower norm โ€–โ‹…โ€–๐’ฐ in ๎‚๐ธ. If ๐‘‹ is complete, then so is ๎‚๐‘‹ since ๎‚๐‘‹ is a closed subset of the Banach space ๎‚๐ธ. In particular, the metric ๎‚๐‘‘ on ๎‚๐‘‹ is given by๎‚๐‘‘(ฬƒ๐‘ฅ,ฬƒ๐‘ฆ)=lim๐’ฐโ€–๐‘ฅ๐‘›โˆ’๐‘ฆ๐‘›โ€–=lim๐’ฐ๐‘‘(๐‘ฅ๐‘›,๐‘ฆ๐‘›),(2.9)with {๐‘ข๐‘›}โˆˆ[{๐‘ฅ๐‘›}] if and only if lim๐’ฐโ€–๐‘ฅ๐‘›โˆ’๐‘ข๐‘›โ€–=0.

If (๐‘‹,๐‘‘,๐‘Š) is a convex metric space, we consider a metric space ultrapower (๎‚๎‚๐‘‹,๐‘‘) of (๐‘‹,๐‘‘) and define a function ๎‚‹๎‚๎‚๎‚๐‘‹๐‘Šโˆถ๐‘‹ร—๐‘‹ร—๐ผโ†’ by๎‚‹๐‘Š(ฬƒ๐‘ฅ,ฬƒ๐‘ฆ,๐œ†)=[๐‘Š(๐‘ฅ๐‘›,๐‘ฆ๐‘›,๐œ†)].(2.10)In order to show that the function ๎‚‹๐‘Š is well defined, we need the following condition. For each ๐‘,๐‘ฅ,๐‘ฆโˆˆ๐‘‹ and ๐œ†โˆˆ[0,1],๐‘‘((1โˆ’๐œ†)๐‘โŠ•๐œ†๐‘ฅ,(1โˆ’๐œ†)๐‘โŠ•๐œ†๐‘ฆ)โ‰ค๐œ†๐‘‘(๐‘ฅ,๐‘ฆ),(2.11)which is equivalent to๐‘‘((1โˆ’๐œ†)๐‘โŠ•๐œ†๐‘ฅ,(1โˆ’๐œ†)๐‘žโŠ•๐œ†๐‘ฆ)โ‰ค๐œ†๐‘‘(๐‘ฅ,๐‘ฆ)+(1โˆ’๐œ†)๐‘‘(๐‘,๐‘ž),(2.12)for all ๐‘,๐‘ž,๐‘ฅ,๐‘ฆโˆˆ๐‘‹ and ๐œ†โˆˆ[0,1].

By using condition (2.12), it is easy to see that ๎‚‹๐‘Š is a convex structure on ๎‚๐‘‹. This implies that (๎‚๎‚๎‚‹๐‘‹,๐‘‘,๐‘Š) is a convex metric space.

Example 2.5. Every Banach space satisfies condition (2.11).

Example 2.6. Condition (2.11) is satisfied for spaces of hyperbolic type (for more details of these spaces see [14]). This is also true for CAT(0) spaces and โ„-trees.

Example 2.7. Let ๐ป be a hyperconvex metric space. Then there exists a nonexpansive retract ๐‘…โˆถ๐‘™โˆž(๐ป)โ†’๐ป (see, e.g., [15] for more on this). For any ๐‘ฅ,๐‘ฆโˆˆ๐ป and ๐‘กโˆˆ[0,1], we let๐‘ก๐‘ฅโŠ•(1โˆ’๐‘ก)๐‘ฆ=๐‘…(๐‘ก๐‘ฅ+(1โˆ’๐‘ก)๐‘ฆ).(2.13)Since ๐‘™โˆž(๐ป) is a Banach space, ๐ป also satisfies condition (2.11).

Let ๐’ฐ be a nontrivial ultrafilter on the natural number โ„•. If (๐‘‹,๐‘‘,๐‘Š) is a uniformly convex metric space satisfying condition (2.11), then the metric space ultrapower (๎‚๎‚๎‚‹๐‘‹,๐‘‘,๐‘Š) relative to ๐’ฐ is also uniformly convex. Indeed, let any ๐œ€>0 and let ๐›ฟ be a positive number corresponding to the uniform convexity of ๐‘‹. Let ๐‘Ÿ>0 and ๎‚๐‘‹ฬƒ๐‘ฅ,ฬƒ๐‘ฆ,ฬƒ๐‘งโˆˆ be such that๎‚๎‚๎‚๐‘‘(ฬƒ๐‘ง,ฬƒ๐‘ฅ)โ‰ค๐‘Ÿ,๐‘‘(ฬƒ๐‘ง,ฬƒ๐‘ฆ)โ‰ค๐‘Ÿ,๐‘‘(ฬƒ๐‘ฅ,ฬƒ๐‘ฆ)โ‰ฅ๐‘Ÿ๐œ€.(2.14)Then there are some representatives (๐‘ฅ๐‘›) and (๐‘ฆ๐‘›) of ฬƒ๐‘ฅ and ฬƒ๐‘ฆ and a set ๐ผโˆˆ๐’ฐ such that๐‘‘(๐‘ง๐‘›,๐‘ฅ๐‘›)โ‰ค๐‘Ÿ,๐‘‘(๐‘ง๐‘›,๐‘ฆ๐‘›)โ‰ค๐‘Ÿ,๐‘‘(๐‘ฅ๐‘›,๐‘ฆ๐‘›)โ‰ฅ๐‘Ÿ๐œ€โˆ€๐‘›โˆˆ๐ผ.(2.15)For such ๐‘›,๐‘‘(๐‘ง๐‘›,๐‘Š(๐‘ฅ๐‘›,๐‘ฆ๐‘›,1/2))โ‰ค๐‘Ÿ(1โˆ’๐›ฟ). This implies ๎‚๎‚‹๐‘‘(ฬƒ๐‘ง,๐‘Š(ฬƒ๐‘ฅ,ฬƒ๐‘ฆ,1/2))โ‰ค๐‘Ÿ(1โˆ’๐›ฟ).

Recall that a subset ๐ถ of a metric space ๐‘‹ is said to be (uniquely) proximinal if each point ๐‘ฅโˆˆ๐‘‹ has a (unique) nearest point in ๐ถ. A convex metric space ๐‘‹ is said to have property (C) if every decreasing sequence of nonempty bounded closed convex subsets of ๐‘‹ has nonempty intersection. In [10], Shimizu and Takahashi proved that property (C) holds in complete uniformly convex metric spaces. This implies that every nonempty closed convex subset of a complete uniformly convex metric space is uniquely proximinal. Indeed, let ๐ถ be a nonempty closed convex subset of a complete uniformly convex metric space ๐‘‹, and ๐‘ฅ0โˆˆ๐‘‹.

Let ๐‘={๐‘ฅโˆˆ๐ถโˆถ๐‘‘(๐‘ฅ0,๐‘ฅ)=dist(๐‘ฅ0,๐ถ)}. For each ๐‘›, we define๐ถ๐‘›โˆถ={๐‘ฆโˆˆ๐ถโˆถ๐‘‘(๐‘ฅ0,๐‘ฆ)โ‰คdist(๐‘ฅ01,๐ถ)+๐‘›}.(2.16)Then (๐ถ๐‘›) is a decreasing sequence of nonempty bounded closed convex subsets of ๐ถ. Moreover,๐‘=โˆž๎™๐‘›=1๐ถ๐‘›,(1)which is nonempty by the above observation. The uniqueness follows from the uniform convexity of ๐‘‹.

3. Main Results

We first establish the following lemma.

Lemma 3.1. Let ๐‘‹ be a complete uniformly convex metric space satisfying condition (2.11), ๐ถ a nonempty closed convex subset of ๐‘‹, ๐‘ฅโˆˆ๐‘‹, and ๐‘(๐‘ฅ) the unique nearest point of ๐‘ฅ in ๐ถ. Then ๐‘‘(๐‘ฅ,๐‘(๐‘ฅ))<๐‘‘(๐‘ฅ,๐‘ฆ)โˆ€๐‘ฆโˆˆ๐ผ๐ถ(๐‘(๐‘ฅ))โงต{๐‘(๐‘ฅ)}.(3.1)

Proof. Let ๐‘ฆโˆˆ๐ผ๐ถ(๐‘(๐‘ฅ))โงต{๐‘(๐‘ฅ)}. Then there is a sequence (๐‘ฆ๐‘›) in ๐ผ๐ถ(๐‘(๐‘ฅ)) and ๐‘ฆ๐‘›โ†’๐‘ฆ. Choose ๐‘›0โˆˆโ„• such that (๐‘(๐‘ฅ),๐‘ฆ๐‘›]โˆฉ๐ถโ‰ โˆ… for all ๐‘›โ‰ฅ๐‘›0. For such ๐‘›, let ๐‘ง๐‘›โˆˆ(๐‘(๐‘ฅ),๐‘ฆ๐‘›]โˆฉ๐ถ and write ๐‘ง๐‘›=(1โˆ’๐›ผ๐‘›)๐‘(๐‘ฅ)โŠ•๐›ผ๐‘›๐‘ฆ๐‘›,๐›ผ๐‘›โˆˆ(0,1]. Then๐‘‘(๐‘ฅ,๐‘(๐‘ฅ))โ‰ค๐‘‘(๐‘ฅ,๐‘ง๐‘›)โ‰ค(1โˆ’๐›ผ๐‘›)๐‘‘(๐‘ฅ,๐‘(๐‘ฅ))+๐›ผ๐‘›๐‘‘(๐‘ฅ,๐‘ฆ๐‘›).(3.2)This implies๐‘‘(๐‘ฅ,๐‘(๐‘ฅ))โ‰ค๐‘‘(๐‘ฅ,๐‘ฆ).(3.3)If ๐‘‘(๐‘ฅ,๐‘(๐‘ฅ))=๐‘‘(๐‘ฅ,๐‘ฆ), we let ๐‘ข=(1/2)๐‘(๐‘ฅ)โŠ•(1/2)๐‘ฆ. By the uniform convexity of ๐‘‹, we have ๐‘‘(๐‘ฅ,๐‘ข)<๐‘‘(๐‘ฅ,๐‘(๐‘ฅ)). On the other hand, for each ๐‘›โ‰ฅ๐‘›0, let ๐‘ข๐‘›=(1/2)๐‘(๐‘ฅ)โŠ•(1/2)๐‘ฆ๐‘›. We will show that ๐‘ข๐‘›โˆˆ๐ผ๐ถ(๐‘(๐‘ฅ)).
Case 1. ๐›ผ๐‘›=1/2. We are done.
Case 2. 1/2<๐›ผ๐‘›. Let ๐‘ฃ๐‘›=(1โˆ’1/2๐›ผ๐‘›)๐‘(๐‘ฅ)โŠ•(1/2๐›ผ๐‘›)๐‘ง๐‘›. This implies๐‘‘(๐‘(๐‘ฅ),๐‘ฃ๐‘›1)=2๐›ผ๐‘›๐‘‘(๐‘(๐‘ฅ),๐‘ง๐‘›1)=2๐‘‘(๐‘(๐‘ฅ),๐‘ฆ๐‘›)=๐‘‘(๐‘(๐‘ฅ),๐‘ข๐‘›),(3.4)๐‘‘(๐‘ฃ๐‘›,๐‘ฆ๐‘›)โ‰ค๐‘‘(๐‘ฃ๐‘›,๐‘ง๐‘›)+๐‘‘(๐‘ง๐‘›,๐‘ฆ๐‘›1)=(1โˆ’2๐›ผ๐‘›)๐‘‘(๐‘(๐‘ฅ),๐‘ง๐‘›)+(1โˆ’๐›ผ๐‘›)๐‘‘(๐‘(๐‘ฅ),๐‘ฆ๐‘›)=(๐›ผ๐‘›โˆ’12)๐‘‘(๐‘(๐‘ฅ),๐‘ฆ๐‘›)+(1โˆ’๐›ผ๐‘›)๐‘‘(๐‘(๐‘ฅ),๐‘ฆ๐‘›1)=2๐‘‘(๐‘(๐‘ฅ),๐‘ฆ๐‘›)=๐‘‘(๐‘ข๐‘›,๐‘ฆ๐‘›).(3.5)Therefore๐‘‘(๐‘ฃ๐‘›,๐‘ฆ๐‘›)โ‰ค๐‘‘(๐‘ข๐‘›,๐‘ฆ๐‘›).(3.6)We claim that ๐‘ข๐‘›=๐‘ฃ๐‘›. If not, let ๐‘ค๐‘›=(1/2)๐‘ข๐‘›โŠ•(1/2)๐‘ฃ๐‘›.
From (3.4), (3.6), and the uniform convexity of ๐‘‹, we have๐‘‘(๐‘(๐‘ฅ),๐‘ค๐‘›)<๐‘‘(๐‘(๐‘ฅ),๐‘ข๐‘›),๐‘‘(๐‘ค๐‘›,๐‘ฆ๐‘›)<๐‘‘(๐‘ข๐‘›,๐‘ฆ๐‘›).(3.7)This implies๐‘‘(๐‘(๐‘ฅ),๐‘ฆ๐‘›)โ‰ค๐‘‘(๐‘(๐‘ฅ),๐‘ค๐‘›)+๐‘‘(๐‘ค๐‘›,๐‘ฆ๐‘›)<๐‘‘(๐‘(๐‘ฅ),๐‘ข๐‘›)+๐‘‘(๐‘ข๐‘›,๐‘ฆ๐‘›)=๐‘‘(๐‘(๐‘ฅ),๐‘ฆ๐‘›),(3.8)which is a contradiction. Hence ๐‘ข๐‘›=๐‘ฃ๐‘›โˆˆ[๐‘(๐‘ฅ),๐‘ง๐‘›] and so ๐‘ข๐‘›โˆˆ๐ผ๐ถ(๐‘(๐‘ฅ)) by the convexity of ๐ถ.

Case 3. ๐›ผ๐‘›<1/2. let ๐‘ฃ๐‘›=(1โˆ’2๐›ผ๐‘›)๐‘(๐‘ฅ)โŠ•2๐›ผ๐‘›๐‘ข๐‘›. By the same arguments in the proof of Case 2, we can show that ๐‘ง๐‘›โˆˆ(๐‘(๐‘ฅ),๐‘ข๐‘›]. This means ๐‘ข๐‘›โˆˆ๐ผ๐ถ(๐‘(๐‘ฅ)).
By condition (2.11), lim๐‘›๐‘ข๐‘›=๐‘ข, which implies ๐‘ขโˆˆ๐ผ๐ธ(๐‘(๐‘ฅ))โงต{๐‘(๐‘ฅ)}. By the same arguments in the first part of the proof, ๐‘‘(๐‘ฅ,๐‘(๐‘ฅ))โ‰ค๐‘‘(๐‘ฅ,๐‘ข) which is a contradiction. Hence ๐‘‘(๐‘ฅ,๐‘(๐‘ฅ))<๐‘‘(๐‘ฅ,๐‘ฆ) as desired.

From [6, Lemma 3.4], we observe that the space is not necessarity assumed to be a CAT(0) space since the proof is only involved with condition (2.11) which is weaker than the (CN) inequality (see [11, Lemma 3]). Therefore, we can obtain the following lemma.

Lemma 3.2. Let ๐‘‹ be a complete convex metric space satisfying condition (2.11), ๐ถ a nonempty closed subset of ๐‘‹, and ๐‘‡โˆถ๐ถโ†’โ„ฑ(๐‘‹) a contraction mapping satisfying, for all ๐‘ฅโˆˆ๐ถ,๐‘‡๐‘ฅโŠ‚๐ผ๐ถ(๐‘ฅ).(3.9)Then ๐‘‡ has a fixed point.

This lemma was first proved in Banach spaces by Lim [7], using transfinite induction, while we apply directly Caristi's theorem. For completeness, we include the details.

Proof of Lemma 3.2.. Let 0โ‰ค๐‘˜<1 be the contraction constant of ๐‘‡ and let ๐œ€>0 be such that ๐œ€+(๐‘˜+2๐œ€)(1+๐œ€)<1. Let ๐‘€={(๐‘ฅ,๐‘ง)โˆถ๐‘งโˆˆ๐‘‡๐‘ฅ,๐‘ฅโˆˆ๐ถ} and define a metric ๐œŒ on ๐‘€ by ๐œŒ((๐‘ฅ,๐‘ง),(๐‘ข,๐‘ฃ))=max{๐‘‘(๐‘ฅ,๐‘ข),๐‘‘(๐‘ง,๐‘ฃ)}. It is easy to see that (๐‘€,๐œŒ) is a complete metric space.
Now define ๐œ“โˆถ๐‘€โ†’[0,โˆž) by ๐œ“(๐‘ฅ,๐‘ง)=๐‘‘(๐‘ฅ,๐‘ง)/๐œ€. Then ๐œ“ is continuous on ๐‘€. Suppose that ๐‘‡ has no fixed points, that is, dist(๐‘ฅ,๐‘‡๐‘ฅ)>0 for all ๐‘ฅโˆˆ๐ถ. Let (๐‘ฅ,๐‘ง)โˆˆ๐‘€. By (3.9), we can find ๐‘ง๎…žโˆˆ๐ผ๐ถ(๐‘ฅ) satisfying ๐‘‘(๐‘ง,๐‘ง๎…ž)<๐œ€dist(๐‘ฅ,๐‘‡๐‘ฅ). Now choose ๐‘ขโˆˆ(๐‘ฅ,๐‘ง๎…ž]โˆฉ๐ถ and write ๐‘ข=(1โˆ’๐›ฟ)๐‘ฅโŠ•๐›ฟ๐‘ง๎…ž for some 0<๐›ฟโ‰ค1. For such ๐›ฟ, we have๐›ฟ๐œ€+(1โˆ’๐›ฟ)+(๐‘˜+2๐œ€)๐›ฟ(1+๐œ€)<1.(3.10)Since ๐‘‘(๐‘ฅ,๐‘ข)>0, we can find ๐‘ฃโˆˆ๐‘‡๐‘ข satisfying๐‘‘(๐‘ง,๐‘ฃ)โ‰ค๐ป(๐‘‡๐‘ฅ,๐‘‡๐‘ข)+๐œ€๐‘‘(๐‘ฅ,๐‘ข)โ‰ค(๐‘˜+๐œ€)๐‘‘(๐‘ฅ,๐‘ข).(3.11) Now we define a mapping ๐‘”โˆถ๐‘€โ†’๐‘€ by ๐‘”(๐‘ฅ,๐‘ง)=(๐‘ข,๐‘ฃ) for all (๐‘ฅ,๐‘ง)โˆˆ๐‘€. We claim that ๐‘” satisfies๐œŒ((๐‘ฅ,๐‘ง),๐‘”(๐‘ฅ,๐‘ง))<๐œ“(๐‘ฅ,๐‘ง)โˆ’๐œ“(๐‘”(๐‘ฅ,๐‘ง))โˆ€(๐‘ฅ,๐‘ง)โˆˆ๐‘€.(3.12)Caristi's theorem [8] then implies that ๐‘” has a fixed point, which contradicts to the strict inequality (3.12) and the proof is complete. So it remains to prove (3.12). In fact, it is enough to show that1๐œŒ((๐‘ฅ,๐‘ง),(๐‘ข,๐‘ฃ))<๐œ€(๐‘‘(๐‘ฅ,๐‘ง)โˆ’๐‘‘(๐‘ข,๐‘ฃ)).(3.13)But ๐‘‘(๐‘ง,๐‘ฃ)โ‰ค๐‘‘(๐‘ฅ,๐‘ข), it only needs to prove that ๐‘‘(๐‘ฅ,๐‘ข)<(1/๐œ€)(๐‘‘(๐‘ฅ,๐‘ง)โˆ’๐‘‘(๐‘ข,๐‘ฃ)).
Now,๐‘‘(๐‘ฅ,๐‘ข)=๐›ฟ๐‘‘(๐‘ฅ,๐‘ง๎…ž)โ‰ค๐›ฟ(๐‘‘(๐‘ฅ,๐‘ง)+๐œ€dist(๐‘ฅ,๐‘‡๐‘ฅ))โ‰ค๐›ฟ(๐‘‘(๐‘ฅ,๐‘ง)+๐œ€๐‘‘(๐‘ฅ,๐‘ง))โ‰ค๐›ฟ(1+๐œ€)๐‘‘(๐‘ฅ,๐‘ง).(3.14)Therefore๐‘‘(๐‘ฅ,๐‘ข)โ‰ค๐›ฟ(1+๐œ€)๐‘‘(๐‘ฅ,๐‘ง).(3.15)It follows that๐‘‘(๐‘ง,๐‘ฃ)โ‰ค(๐‘˜+๐œ€)๐‘‘(๐‘ฅ,๐‘ข)โ‰ค(๐‘˜+๐œ€)๐›ฟ(1+๐œ€)๐‘‘(๐‘ฅ,๐‘ง).(3.16)We now let ๐‘ฆ=(1โˆ’๐›ฟ)๐‘ฅโŠ•๐›ฟ๐‘ง, then by the condition (2.11),๐‘‘(๐‘ข,๐‘ฃ)โ‰ค๐‘‘(๐‘ข,๐‘ฆ)+๐‘‘(๐‘ฆ,๐‘ง)+๐‘‘(๐‘ง,๐‘ฃ)โ‰ค๐›ฟ๐‘‘(๐‘ง,๐‘ง๎…ž)+(1โˆ’๐›ฟ)๐‘‘(๐‘ฅ,๐‘ง)+(๐‘˜+๐œ€)๐›ฟ(1+๐œ€)๐‘‘(๐‘ฅ,๐‘ง)โ‰ค๐›ฟ๐œ€๐‘‘(๐‘ฅ,๐‘ง)+((1โˆ’๐›ฟ)+(๐‘˜+๐œ€)๐›ฟ(1+๐œ€))๐‘‘(๐‘ฅ,๐‘ง).(3.17)Thus๐‘‘(๐‘ข,๐‘ฃ)โ‰ค(๐›ฟ๐œ€+(1โˆ’๐›ฟ)+(๐‘˜+๐œ€)๐›ฟ(1+๐œ€))๐‘‘(๐‘ฅ,๐‘ง).(3.18)Inequalities (3.15), (3.18), and (3.10) imply that๐œ€๐‘‘(๐‘ฅ,๐‘ข)+๐‘‘(๐‘ข,๐‘ฃ)โ‰ค๐œ€๐›ฟ(1+๐œ€)๐‘‘(๐‘ฅ,๐‘ง)+(๐›ฟ๐œ€+(1โˆ’๐›ฟ)+(๐‘˜+๐œ€)๐›ฟ(1+๐œ€))๐‘‘(๐‘ฅ,๐‘ง)=(๐›ฟ๐œ€+(1โˆ’๐›ฟ)+(๐‘˜+2๐œ€)๐›ฟ(1+๐œ€))๐‘‘(๐‘ฅ,๐‘ง)<๐‘‘(๐‘ฅ,๐‘ง).(3.19)Therefore ๐‘‘(๐‘ฅ,๐‘ข)<(1/๐œ€)(๐‘‘(๐‘ฅ,๐‘ง)โˆ’๐‘‘(๐‘ข,๐‘ฃ)) as desired.

By Lemmas 3.1 and 3.2 with the same arguments in the proof of Theorem 3.3 of [6], we can obtain the following theorem which extends [4, Theorem 8] by Lim and [6, Theorem 3.3] by Dhompongsa et al.

Theorem 3.3. Let ๐‘‹ be a complete uniformly convex metric space satisfying condition (2.11), ๐ถ a nonempty bounded closed convex subset of ๐‘‹, and ๐‘‡โˆถ๐ถโ†’๐’ฆ(๐‘‹) a nonexpansive weakly inward mapping. Then ๐‘‡ has a fixed point.

As an immediate consequence of Theorem 3.3, we obtain the following corollary.

Corollary 3.4. Let ๐‘‹ be a complete uniformly convex metric space satisfying condition (2.11), ๐ถ a nonempty bounded closed convex subset of ๐‘‹, and ๐‘‡โˆถ๐ถโ†’๐’ฆ(๐ถ) a nonexpansive mapping. Then ๐‘‡ has a fixed point.

In fact, this corollary is a special case of [10, Theorem 2] in which condition (2.11) was not assumed. An interesting question is whether condition (2.11) in Theorem 3.3 can be dropped.

Let ๐ถ be a nonempty subset of a metric space ๐‘‹. Recall that a single-valued mapping ๐‘กโˆถ๐ถโ†’๐ถ and a multivalued mapping ๐‘‡โˆถ๐ถโ†’2๐ถโงตโˆ… are said to be commuting if ๐‘ก๐‘ฆโˆˆ๐‘‡๐‘ก๐‘ฅ for all ๐‘ฆโˆˆ๐‘‡๐‘ฅ and ๐‘ฅโˆˆ๐ถ. If ๐‘กโˆถ๐ถโ†’๐ถ is nonexpansive with ๐ถ being bounded closed convex and ๐‘‹ complete uniformly convex satisfying condition (2.11), then Fix(๐‘ก) is nonempty by the above corollary. Moreover, by a standard argument, we can show that it is also closed and convex. So we can obtain a common fixed point theorem in uniformly convex metric spaces as [6, Theorem 4.1] (see also [16, Theorem 4.2] for a related result in Banach spaces).

Theorem 3.5. Let ๐‘‹ be a complete uniformly convex metric space satisfying condition (2.11), let ๐ถ be a nonempty bounded closed convex subset of ๐‘‹, and let ๐‘กโˆถ๐ถโ†’๐ถ and ๐‘‡โˆถ๐ถโ†’๐’ฆ๐’ž(๐ถ) be nonexpansive. Assume that for some ๐‘โˆˆ๐น๐‘–๐‘ฅ(๐‘ก),๐›ผ๐‘โŠ•(1โˆ’๐›ผ)๐‘‡๐‘ฅisconvexโˆ€๐‘ฅโˆˆ๐ถ,โˆ€๐›ผโˆˆ[0,1].(3.20)If ๐‘ก and ๐‘‡ are commuting, then there exists a point ๐‘งโˆˆ๐ถ such that ๐‘ก๐‘ง=๐‘งโˆˆ๐‘‡๐‘ง.

4. Fixed Point Sets of Quasi-Nonexpansive Mappings

Let ๐‘‹ be a metric space. Recall that a mapping ๐‘“โˆถ๐‘‹โ†’๐‘‹ is said to be quasi-nonexpansive if ๐‘‘(๐‘“(๐‘ฅ),๐‘)โ‰ค๐‘‘(๐‘ฅ,๐‘) for all ๐‘ฅโˆˆ๐‘‹ and ๐‘โˆˆFix(๐‘“). In this case, we will assume that Fix(๐‘“)โ‰ โˆ…. In [17], Chaoha and Phon-on showed that if ๐‘‹ is a CAT(0) space, then Fix(๐‘“) is closed convex. Furthermore, they gave an explicit construction of a continuous function defined on ๐‘‹ whose fixed point set is any prescribed closed subset of ๐‘‹. In this section, we extend these results to uniformly convex metric spaces.

We begin by proving the following lemma.

Lemma 4.1. Let ๐‘‹ be a uniformly convex metric space, and let ๐‘ฅ,๐‘ฆ,๐‘งโˆˆ๐‘‹ for which ๐‘‘(๐‘ฅ,๐‘ง)+๐‘‘(๐‘ง,๐‘ฆ)=๐‘‘(๐‘ฅ,๐‘ฆ).(4.1)Then ๐‘งโˆˆ[๐‘ฅ,๐‘ฆ].

Proof. Let ๐‘ขโˆˆ[๐‘ฅ,๐‘ฆ] be such that ๐‘‘(๐‘ฅ,๐‘ข)=๐‘‘(๐‘ฅ,๐‘ง). Then ๐‘‘(๐‘ฅ,๐‘ฆ)=๐‘‘(๐‘ฅ,๐‘ข)+๐‘‘(๐‘ข,๐‘ฆ) and also ๐‘‘(๐‘ง,๐‘ฆ)=๐‘‘(๐‘ข,๐‘ฆ) by (4.1). We will show that ๐‘ง=๐‘ข. Suppose not, we let ๐‘ฃ=(1/2)๐‘งโŠ•(1/2)๐‘ข and ๐‘Ÿ=๐‘‘(๐‘ฅ,๐‘ข)=๐‘‘(๐‘ฅ,๐‘ง). Since ๐‘‘(๐‘ง,๐‘ข)>0, choose ๐œ€>0 so that ๐‘‘(๐‘ง,๐‘ข)>๐‘Ÿ๐œ€. By the uniform convexity of ๐‘‹, there exists ๐›ฟ>0 such that๐‘‘(๐‘ฅ,๐‘ฃ)โ‰ค๐‘Ÿ(1โˆ’๐›ฟ)<๐‘Ÿ=๐‘‘(๐‘ฅ,๐‘ง).(4.2)By using the same arguments, we can show that ๐‘‘(๐‘ฆ,๐‘ฃ)<๐‘‘(๐‘ฆ,๐‘ง). Therefore๐‘‘(๐‘ฅ,๐‘ฆ)โ‰ค๐‘‘(๐‘ฅ,๐‘ฃ)+๐‘‘(๐‘ฆ,๐‘ฃ)<๐‘‘(๐‘ฅ,๐‘ง)+๐‘‘(๐‘ฆ,๐‘ง)=๐‘‘(๐‘ฅ,๐‘ฆ),(4.3)which is a contradiction.

By using the above lemma with the proof of Theorem 1.3 of [17], we obtain the following result.

Theorem 4.2. Let ๐‘‹ be a convex subset of a uniformly convex metric space and ๐‘“โˆถ๐‘‹โ†’๐‘‹ a quasi-nonexpansive mapping whose fixed point set is nonempty. Then ๐น๐‘–๐‘ฅ(๐‘“) is closed convex.

In [17], the authors constructed a continuous function defined on a CAT(0) space ๐‘‹ whose fixed point set is any prescribed closed subset of ๐‘‹ by using the following two implications of the (CN) inequality:๐‘‘((1โˆ’๐‘ก)๐‘ฅโŠ•๐‘ก๐‘ฆ,(1โˆ’๐‘ )๐‘ฅโŠ•๐‘ ๐‘ฆ)=|๐‘กโˆ’๐‘ |๐‘‘(๐‘ฅ,๐‘ฆ)โˆ€๐‘ฅ,๐‘ฆโˆˆ๐‘‹,๐‘ก,๐‘ โˆˆ[0,1],(4.4)๐‘‘((1โˆ’๐‘ก)๐‘ฅโŠ•๐‘ก๐‘ฆ,(1โˆ’๐‘ก)๐‘ฅโŠ•๐‘ก๐‘ง)โ‰ค๐‘‘(๐‘ฆ,๐‘ง)โˆ€๐‘ฅ,๐‘ฆ,๐‘งโˆˆ๐‘‹,๐‘กโˆˆ[0,1].(4.5) In fact, condition (4.4) holds in uniformly convex metric spaces as the following lemma shows.

Lemma 4.3. Condition (4.4) holds in uniformly convex metric spaces.

Proof. We first note that the conclusion holds if ๐‘ =0 or ๐‘ก=0. We now let ๐‘‹ be a uniformly convex metric space, ๐‘ฅ,๐‘ฆโˆˆ๐‘‹, and ๐‘ก,๐‘ โˆˆ(0,1]. Let ๐‘ข=(1โˆ’๐‘ก)๐‘ฅโŠ•๐‘ก๐‘ฆ and ๐‘ง=(1โˆ’๐‘ )๐‘ฅโŠ•๐‘ ๐‘ฆ. Without loss of generality, we can assume that ๐‘ก<๐‘ . Let ๐‘ฃ=(1โˆ’๐‘ก/๐‘ )๐‘ฅโŠ•(๐‘ก/๐‘ )๐‘ง, then๐‘ก๐‘‘(๐‘ฅ,๐‘ฃ)=๐‘ ๐‘ก๐‘‘(๐‘ฅ,๐‘ง)=๐‘ก๐‘‘(๐‘ฅ,๐‘ฆ),๐‘‘(๐‘ฃ,๐‘ฆ)โ‰ค(1โˆ’๐‘ ๐‘ก)๐‘‘(๐‘ฅ,๐‘ฆ)+๐‘ ๐‘‘(๐‘ง,๐‘ฆ)=(1โˆ’๐‘ก)๐‘‘(๐‘ฅ,๐‘ฆ).(4.6)If ๐‘ขโ‰ ๐‘ฃ, we let ๐‘ค=(1/2)๐‘ขโŠ•(1/2)๐‘ฃ. Then by the uniform convexity of ๐‘‹, we can show that ๐‘‘(๐‘ฅ,๐‘ค)<๐‘‘(๐‘ฅ,๐‘ข) and ๐‘‘(๐‘ฆ,๐‘ค)<๐‘‘(๐‘ฆ,๐‘ข). This implies๐‘‘(๐‘ฅ,๐‘ฆ)<๐‘‘(๐‘ฅ,๐‘ข)+๐‘‘(๐‘ข,๐‘ฆ)=๐‘‘(๐‘ฅ,๐‘ฆ),(4.7)which is a contradiction, hence ๐‘ข=๐‘ฃ. Therefore๐‘ก๐‘‘(๐‘ง,๐‘ข)=๐‘‘(๐‘ง,๐‘ฃ)=(1โˆ’๐‘ )๐‘‘(๐‘ฅ,๐‘ง)=|๐‘ โˆ’๐‘ก|๐‘‘(๐‘ฅ,๐‘ฆ).(4.8)

It is unclear that condition (4.5) holds for uniformly convex metric spaces. However, the following theorem is a generalization of [17, Theorem 2.1], we omit the proof because it is similar to the one given in [17].

Theorem 4.4. Let ๐ด be a nonempty subset of a uniformly convex metric space ๐‘‹ satisfying condition (4.5). Then there exists a continuous function ๐‘“โˆถ๐‘‹โ†’๐‘‹ such that ๐น๐‘–๐‘ฅ(๐‘“)=๐ด.

Acknowledgment

This research was supported by the Commission on Higher Education and Thailand Research Fund under Grant MRG5080188.