Table of Contents Author Guidelines Submit a Manuscript
International Journal of Mathematics and Mathematical Sciences
Volume 2008 (2008), Article ID 350326, 20 pages
http://dx.doi.org/10.1155/2008/350326
Research Article

The Schwarz-Christoffel Conformal Mapping for “Polygons” with Infinitely Many Sides

Departamento de Matemáticas, Pontificia Universidad Católica de Chile, Avenue Vicuña Makenna 4860, 7820436 Macul, Santiago, Chile

Received 22 January 2008; Revised 15 May 2008; Accepted 1 July 2008

Academic Editor: Vladimir Mityushev

Copyright © 2008 Gonzalo Riera et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Bonciani and F. Vlacci, “Some remarks on Schwarz-Christoffel transformations from the unit disk to a regular polygon and their numerical computation,” Complex Variables and Elliptic Equations, vol. 49, no. 4, pp. 271–284, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. P. Henrici, Applied and Computational Complex Analysis. Vol. 1: Power Series, Integration, Conformal Mapping, Location of Zeros, Pure and Applied Mathematics, John Wiley & Sons, New York, NY, USA, 1974. View at Zentralblatt MATH · View at MathSciNet
  3. E. Johnston, “A “counter example” for the Schwarz-Christoffel transform,” The American Mathematical Monthly, vol. 90, no. 10, pp. 701–703, 1983. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. T. A. Driscoll and L. N. Trefethen, Schwarz-Christoffel Mapping, vol. 8 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, UK, 2002. View at Zentralblatt MATH · View at MathSciNet
  5. P. J. Myrberg, “Über analytische Funktionen auf transzendenten zweiblättrigen Riemannschen Flächen mit reellen Verzweigungspunkten,” Acta Mathematica, vol. 76, no. 3-4, pp. 185–224, 1945. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. M. Brady and C. Pozrikidis, “Diffusive transport across irregular and fractal walls,” Proceedings of the Royal Society of London. Series A, vol. 442, no. 1916, pp. 571–583, 1993. View at Google Scholar