Table of Contents Author Guidelines Submit a Manuscript
International Journal of Mathematics and Mathematical Sciences
Volume 2010 (2010), Article ID 190830, 8 pages
http://dx.doi.org/10.1155/2010/190830
Review Article

A Survey on Just-Non- Groups

1Dipartimento di Matematica, Università di Palermo, Via Archirafi 34, 90123, Palermo, Italy
2Dipartimento di Matematica e Applicazioni “R.Caccioppoli”, Università di Napoli “Federico II”, via Cinzia 80126, Napoli, Italy
3Istituto d'Istruzione Secondaria Superiore Statale dell'Isola di Capri Axel Munthe, viale Axel Munthe 4, 80071 Anacapri (Na), Italy

Received 15 December 2009; Accepted 4 February 2010

Academic Editor: Mihai Putinar

Copyright © 2010 Daniele Ettore Otera and Francesco G. Russo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Doerk and T. Hawkes, Finite Soluble Groups, vol. 4 of de Gruyter Expositions in Mathematics, Walter de Gruyter, Berlin, Germany, 1992. View at MathSciNet
  2. H. Heineken, “Groups with all quotient groups Lagrangian,” Archiv der Mathematik, vol. 64, no. 2, pp. 97–102, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. L. Kurdachenko, J. Otal, and I. Subbotin, Groups with Prescribed Quotient Groups and Associated Module Theory, vol. 8 of Series in Algebra, World Scientific, River Edge, NJ, USA, 2002. View at MathSciNet
  4. P.-E. Caprace and N. Monod, “Decomposing locally compact groups into simple pieces,” Cornell University, preprint, 2008, http://arxiv.org/abs/0811.4101.
  5. F. G. Russo, “On compact just-non-Lie groups,” Journal of Lie Theory, vol. 17, no. 3, pp. 625–632, 2007. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. F. G. Russo, “Some groups whose proper quotients have minimax conjugacy classes,” International Journal of Algebra, vol. 2, no. 5–8, pp. 291–299, 2008. View at Google Scholar · View at MathSciNet
  7. F. G. Russo, “Groups with many quotients which are PC-groups,” International Journal of Contemporary Mathematical Sciences, vol. 3, no. 25–28, pp. 1041–1058, 2008. View at Google Scholar · View at MathSciNet
  8. F. G. Russo, Advances in just-non-𝔛 groups and minimal non-𝔛 groups, Ph.D. thesis, University of Naples Federico II, Naples, Italy, 2009.
  9. F. G. Russo, “Locally compact groups which are just not compact,” Advances in Pure and Applied Mathematics. In press.
  10. V. K. Jain, R. Lal, and R. P. Shukla, “Finite just non-Dedekind groups,” International Journal of Algebra, vol. 3, no. 5–8, pp. 391–400, 2009. View at Google Scholar · View at MathSciNet
  11. M. R. Dixon, Sylow Theory, Formations and Fitting Classes in Locally Finite Groups, vol. 2 of Series in Algebra, World Scientific, River Edge, NJ, USA, 1994. View at MathSciNet
  12. N. Bourbaki, Groupes et Algèbre de Lie, Actualités Scientifiques et Industrielles, Hermann, Paris, France, 1968.
  13. A. M. Gleason, “The structure of locally compact groups,” Duke Mathematical Journal, vol. 18, pp. 85–104, 1951. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. K. H. Hofmann, “Zerfällung topologischer Gruppen,” Mathematische Zeitschrift, vol. 84, pp. 16–37, 1964. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. K. H. Hofmann and S. A. Morris, The Structure of Compact Groups, vol. 25 of de Gruyter Studies in Mathematics, Walter de Gruyter, Berlin, Germany, 2006. View at MathSciNet
  16. L. Ribes and A. Zalesskii, Profinite Groups, Springer, Berlin, Germany, 2000.
  17. M. Stroppel, Locally Compact Groups, EMS Textbooks in Mathematics, European Mathematical Society, Zürich, Switzerland, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  18. K. H. Hofmann and S. A. Morris, The Lie Theory of Connected Pro-Lie Groups, vol. 2 of EMS Tracts in Mathematics, European Mathematical Society, Zürich, Switzerland, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  19. A. O. Asar, “Locally nilpotent p-groups whose proper subgroups are hypercentral or nilpotent-by-Chernikov,” Journal of the London Mathematical Society, vol. 61, no. 2, pp. 412–422, 2000. View at Publisher · View at Google Scholar · View at MathSciNet
  20. A. Ballester-Bolinches, “-critical groups, -subnormal subgroups, and the generalised Wielandt property for residuals,” Ricerche di Matematica, vol. 55, no. 1, pp. 13–30, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  21. J. C. Beidleman and H. Heineken, “Minimal non--groups,” Ricerche di Matematica, vol. 58, no. 1, pp. 33–41, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  22. B. Bruno and R. E. Phillips, “On minimal conditions related to Miller-Moreno type groups,” Rendiconti del Seminario Matematico della Università di Padova, vol. 69, pp. 153–168, 1983. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. A. Dilmi, “Groups whose proper subgroups are locally finite-by-nilpotent,” Annales Mathématiques Blaise Pascal, vol. 14, no. 1, pp. 29–35, 2007. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  24. M. Kuzucuoğlu and R. E. Phillips, “Locally finite minimal non-FC-groups,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 105, no. 3, pp. 417–420, 1989. View at Google Scholar · View at MathSciNet
  25. Felix Leinen, “A reduction theorem for perfect locally finite minimal non-FC groups,” Glasgow Mathematical Journal, vol. 41, no. 1, pp. 81–83, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  26. M. F. Newman and J. Wiegold, “Groups with many nilpotent subgroups,” Archiv der Mathematik (Basel), vol. 15, pp. 241–250, 1964. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. F. G. Russo and N. Trabelsi, “On minimal non-PC-groups,” Annales Mathématiques Blaise Pascal, vol. 16, no. 2, pp. 277–286, 2009. View at Google Scholar · View at MathSciNet
  28. L. A. Shemetkov and O. Yu, “Schmidt and finite groups,” Ukrainian Mathematical Journal, vol. 23, no. 5, pp. 482–486, 1971. View at Google Scholar
  29. H. Smith, “Groups with few non-nilpotent subgroups,” Glasgow Mathematical Journal, vol. 39, no. 2, pp. 141–151, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  30. N. Trabelsi, “On minimal non-(torsion-by-nilpotent) and non-((locally finite)-by-nilpotent) groups,” Comptes Rendus Mathématique. Académie des Sciences. Paris, vol. 344, no. 6, pp. 353–356, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  31. M. Xu, “Groups whose proper subgroups are finite-by-nilpotent,” Archiv der Mathematik, vol. 66, no. 5, pp. 353–359, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  32. J. C. Lennox and D. J. Robinson, The Theory of Infinite Soluble Groups, Oxford University Press, Oxford, UK, 2004.
  33. D. J. Robinson, A Course in the Theory of Groups, vol. 80 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1982. View at MathSciNet
  34. S. A. Morris, “Varieties of topological groups: a survey,” Colloquium Mathematicum, vol. 46, no. 2, pp. 147–165, 1982. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  35. J. S. Wilson, Profinite Groups, vol. 19 of London Mathematical Society Monographs. New Series, The Clarendon Press, New York, NY, USA, 1998. View at MathSciNet
  36. D. E. Otera and F. G. Russo, “A note on the JNΩ groups,” Beiträge zur Algebra und Geometrie. In press.
  37. S. G. Brick and M. L. Mihalik, “The QSF property for groups and spaces,” Mathematische Zeitschrift, vol. 220, no. 2, pp. 207–217, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  38. D. E. Otera, Asymptotic topology of groups, Ph.D. thesis, Università di Palermo, Palermo, Italy, 2006.
  39. D. E. Otera and F. G. Russo, “On the WGSC property in some classes of groups,” Mediterranean Journal of Mathematics, vol. 6, pp. 501–508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Glöckner, R. Gramlich, and T. Hartnick, “Final group topologies, Kac-Moody groups and Pontryagin duality,” to appear Israel Journal of Mathematics. View at Publisher · View at Google Scholar
  41. R. Gramlich and A. Mars, “Isomorphisms of unitary forms of Kac-Moody groups over finite fields,” Journal of Algebra, vol. 322, no. 2, pp. 554–561, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet