`International Journal of Mathematics and Mathematical SciencesVolume 2010, Article ID 309503, 26 pageshttp://dx.doi.org/10.1155/2010/309503`
Research Article

## Extensions of Certain Classical Summation Theorems for the Series 2𝐹1, 3𝐹2, and 4𝐹3 with Applications in Ramanujan's Summations

1Department of Mathematics Education, Wonkwang University, Iksan 570-749, Republic of Korea
2Mathematics Department, College of Science, Suez Canal University, Ismailia 41522, Egypt
3Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, P.O. Box 36, Muscat, Alkhod 123, Oman
4Vedant College of Engineering and Technology, Village-Tulsi, Post-Jakhmund, Bundi, Rajasthan State 323021, India

Received 20 May 2010; Revised 7 September 2010; Accepted 23 September 2010

Copyright © 2010 Yong Sup Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. C. F. Gauss, “Disquisitiones generales circa seriem infinitam $\left[\alpha \beta /1.\gamma \right]x$$+\left[\alpha \left(\alpha +1\right)\beta \left(\beta +1\right)/1.2.\gamma \left(\gamma +1\right)\right]{x}^{2}+\left[\alpha \left(\alpha +1\right)\left(\alpha +2\right)\beta \left(\beta +1\right)\left(\beta +2\right)/1.2.3.\gamma \left(\gamma +1\right)\left(\gamma +2\right)\right]{x}^{3}$ + etc. pars prior,” Commentationes Societiones Regiae Scientiarum Gottingensis Recentiores, vol. 2, 1812, reprinted in Gesammelte Werke, vol. 3, pp. 123–163 and 207–229, 1866.
2. B. C. Berndt, Ramanujan’s Note Books, Vol. II, Springer, New York, NY, USA, 1987.
3. W. N. Bailey, “Products of generalized hypergeometric series,” Proceedings of the London Mathematical Society, vol. 2, no. 28, pp. 242–254, 1928.
4. Y. S. Kim, M. A. Rakha, and A. K. Rathie, “Generalization of Kummer's second theorem with application,” Computational Mathematics and Mathematical Physics, vol. 50, no. 3, pp. 387–402, 2010.
5. W. N. Bailey, Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Stechert-Hafner, New York, NY, USA, 1964.
6. M. A. Rakha and A. K. Rathie, “Generalizations of classical summation theorems for the series ${}_{2}F{}_{1}$ and ${}_{3}F{}_{2}$ with applications,” to appear in Integral Transform and Special Functions.
7. J.-L. Lavoie, F. Grondin, and A. K. Rathie, “Generalizations of Watson's theorem on the sum of a ${}_{3}F{}_{2}$,” Indian Journal of Mathematics, vol. 32, no. 1, pp. 23–32, 1992.
8. J.-L. Lavoie, F. Grondin, A. K. Rathie, and K. Arora, “Generalizations of Dixon's theorem on the sum of a ${}_{3}F{}_{2}$,” Mathematics of Computation, vol. 62, no. 205, pp. 267–276, 1994.
9. J. L. Lavoie, F. Grondin, and A. K. Rathie, “Generalizations of Whipple's theorem on the sum of a ${}_{3}F{}_{2}$,” Journal of Computational and Applied Mathematics, vol. 72, no. 2, pp. 293–300, 1996.
10. J. Choi, “Contiguous extensions of Dixon's theorem on the sum of a ${}_{3}F{}_{2}$,” Journal of Inequalities and Applications, vol. 2010, Article ID 589618, 17 pages, 2010.
11. A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and Series, Gordon and Breach Science, New York, NY, USA, 1986.
12. A. R. Miller, “A summation formula for Clausen's series ${}_{3}F{}_{2}\left(1\right)$ with an application to Goursat's function ${}_{2}F{}_{2}\left(x\right)$,” Journal of Physics A, vol. 38, no. 16, pp. 3541–3545, 2005.
13. Y. S. Kim and A. K. Rathie, “Comment on: “a summation formula for Clausen's series ${}_{3}F{}_{2}\left(1\right)$ with an application to Goursat's function ${}_{2}F{}_{2}\left(x\right)$,” Journal of Physics A, vol. 41, no. 7, Article ID 078001, 2008.